Journal of Ornithology

, Volume 158, Issue 4, pp 965–978 | Cite as

Phylogeny and taxonomy of the Socorro parakeet (Psittacara holochlorus brevipes): recent speciation with minor morphological differentiation

  • Juan E. Martínez-Gómez
  • Noemí Matías-Ferrer
  • Patricia Escalante-PliegoEmail author
Original Article


The Socorro parakeet (Psittacara holochlorus brevipes), endemic to Socorro Island has long been treated as a subspecies by several authorities while others considered it to be a full a species based on different types of evidence. We reviewed the phylogenetic placement of the Socorro parakeet using molecular techniques adding newly derived information from several fresh and museum specimens to available sequences in GenBank. We obtained revised phylogenies from NADH dehydrogenase 2 (ND2) and cytochrome oxidase I (COI) mitochondrial genes. Maximum likelihood and Bayesian phylogenetic analysis recovered the phylogeny of Psittacara. This clade has strong support for both genes and taxa within the clade show reciprocal monophyly. Based on this phylogenetic placement and geographical isolation, we recommend recognizing the Socorro parakeet as a distinct species (Psittacara brevipes). Psittacara h. rubritorquis should be treated as a distinct species as well. This taxonomic arrangement also will draw more attention to this parakeet from the conservation community considering the restricted distribution and small population size of the Socorro parakeet.


Green parakeet Psittacara holochlorus Socorro parakeet Psittacara holochlorus brevipes Socorro Island Revillagigedo Archipelago 


Phylogenie und Taxonomie des Socorrosittichs ( Psittacara holochlorus brevipes ): kürzlich erfolgte Speziation mit geringfügiger morphologischer Differenzierung

Der für die Insel Socorro (Mexiko) endemische Socorrosittich (Psittacara holochlorus brevipes) wurde von verschiedenen Quellen lange Zeit als Unterart behandelt, während weitere ihn auf der Grundlage anderer Belege als eigene Art betrachteten. Auf der Grundlage von aus Frisch- und Museumsmaterial neugewonnenen Daten sowie vorhandener GenBank-Sequenzen führten wir mittels molekularbiologischer Techniken eine Neubewertung der phylogenetischen Einordnung des Socorrosittichs durch. Wir erstellten überarbeitete Phylogenien für die mitochondrialen Gene für NADH-Dehydrogenase 2 (ND2) und Cytochromoxidase I (COI). Durch phylogenetische Analysen (Maximum-Likelihood- und Bayes’sche Methoden) ermittelten wir die Phylogenie der Gattung Psittacara. Diese Klade wird statistisch gut gestützt, da sowohl Gene als auch Taxa innerhalb der Klade reziproke Monophylie zeigen. Auf der Grundlage dieser phylogenetischen Einordnung und der geografischen Isolation schlagen wir vor, den Socorrosittich als eigenständige Art (Psittacara brevipes) anzuerkennen. Psittacara h. rubritorquis sollte ebenfalls als eigene Art behandelt werden. Diese taxonomische Stellung wird dem Socorrosittich, eingedenk seiner beschränkten Verbreitung und der kleinen Populationsgröße, auch von Seiten des Artenschutzes mehr Aufmerksamkeit einbringen.



The Mexican Navy provided generous logistical support that allowed sampling of individuals used this study; we particularly thank Admiral F. Jiménez Colorado, Captain D. Castro Castro and naval personnel stationed at Socorro Island. We are grateful to M. J. Navarro Sánchez, Reserve´s acting director of the Biosphere Reserve, and Lieutenants A. Lechuga Medina at the Naval Oceanographic Institute, J. Cervantes Pasqualli, for their invaluable field assistance. We sincerely appreciate R. Alonso at Facultad de Veterinaria y Zootecnia (UNAM) for providing samples of P. h. holochlorus. We sincerely thank the Administration of the Federal Insular Territory at the Ministry of Interior (SEGOB) for supporting research on Mexican islands. Financial support was provided by the Island Endemics Foundation, Endémicos Insulares AC and the Instituto de Ecología AC (INECOL). This research was conducted under permits DICOPPU/211/2158/10 (SEGOB) and SGPA/DGVS/06778/10 (SEMARNAT) granted to JEMG. We followed ethical standards for the use of animals in scientific research.


  1. American Ornithologists’ Union (1983) Checklist of North American birds, 6th edn. Allen LawrenceGoogle Scholar
  2. American Ornithologists’ Union (1998) Checklist of North American birds, 7th edn. Allen LawrenceGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University, ChicagoGoogle Scholar
  4. Avise JC, Zink RM (1998) Molecular genetic divergence between avian sibling species: King and Clapper rails, Long-billed and Short-billed dowitchers, Boat-tailed and Great-tailed grackles, and Tufted and Black-crested titmice. Auk 105:516–528Google Scholar
  5. Barber BR, Martínez-Gómez JE, Peterson AT (2004) Systematic position of the Socorro mockingbird Mimodes graysoni. J Avian Biol 35:195–198CrossRefGoogle Scholar
  6. BirdLife International (2016) Handbook of the birds of the world and birdlife international digital checklist of the birds of the world, version 9. Available at: [.xls zipped 1 MB]. Accessed 4 June 2017
  7. Blake ER (1953) Birds of Mexico. A guide for field identification. University of Chicago, ChicagoGoogle Scholar
  8. Bohrson WA, Reid MR (1998) Genesis of evolved ocean island magmas by deep-and shallow-level basement recycling, Socorro Island, Mexico: constraints from Th and other isotope signatures. J Petrol 39:995–1008CrossRefGoogle Scholar
  9. Bohrson WA, Reid MR, Grunder AL, Heizler MT, Harrison TM, Lee J (1996) Prolonged history of silicic peralkaline volcanism in the eastern Pacific Ocean. J Geophys Res 101:11457–11474CrossRefGoogle Scholar
  10. Brattstrom BH (1990) Biogeography of the Islas Revillagigedo, Mexico. J Biogeogr 17:177–183CrossRefGoogle Scholar
  11. Chaves JA, Cooper EA, Hendry AP, Podos J, De León LF, Raeymaekers JA, MacMillan WO, Uy JAC (2016) Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol Ecol. doi: 10.1111/mec.13743 PubMedGoogle Scholar
  12. Chesser RT, Banks RC, Cicero C, Dunn JL, Kratter AW, Lovette IJ, Navarro-Siguenza AG, Rasmussen PC, Remsen JV, Rising JD, Stotz DF, Winker K (2014) Fifty-fifth supplement to the American Ornithologists’ Union check-list of North American Birds. Auk 131:CSi–CSxv. doi: 10.1642/AUK-14-124.1 CrossRefGoogle Scholar
  13. Chesser RT, Banks RC, Burns KJ, Cicero C, Dunn JL, Kratter AW, Lovette IJ, Navarro-Sigüenza AG, Rasmussen PC, Remsen JV Jr, Rising JD, Stotz DF, Winker K (2015) Fifty-sixth supplement to the American Ornithologists’ Union:check-list of North American birds. Auk 132:748–764CrossRefGoogle Scholar
  14. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefPubMedGoogle Scholar
  16. Dickinson EC, Remsen JV Jr (2013) The Howard and Moore Complete checklist of the birds of the world. Vol. 1. Non-passerines. Aves, EastbourneGoogle Scholar
  17. Evans EL, Martínez-Gómez JE, Sehgal RNM (2015) Phylogenetic relationships and taxonomic status of the endemic Socorro Warbler (Setophaga pitiayumi graysoni). J Ornithol 156:363–370CrossRefGoogle Scholar
  18. Feldman CR, Oscar Flores-Villela O, Papenfuss TJ (2011) Phylogeny, biogeography, and display evolution in the tree and brush lizard genus Urosaurus (Squamata: Phrynosomatidae). Mol Phylogenet Evol 61:71–725CrossRefGoogle Scholar
  19. Flores-Palacios A, Martínez-Gómez JE, Curry RL (2009) La vegetación de IslaSocorro, Archipiélago de Revillagigedo, México. Bol Soc Bot Mex 84:13–23Google Scholar
  20. Freddi AMG (2012) Sistemática molecular e biogeografia histórica do gênero Aratinga (Psittacidae, Aves) Dissertação de Mestrado. Instituto de Biociências. Universidade de São Paulo, São PauloGoogle Scholar
  21. Friedmann H, Griscom L, Moore RT (1950) Distributional check-list of the birds of Mexico Part I. Pac Coast Avifauna 29:125Google Scholar
  22. Gill FB (2014) Species taxonomy of birds: which null hypothesis? Auk 131:150–161CrossRefGoogle Scholar
  23. Gill F, Donsker D (eds) (2017) IOC world bird list (v 7.1). doi: 10.14344/IOC.ML.7.1
  24. Grayson AJ (1871) On the physical geography and natural history of the islands of the Tres Marias and of Socorro, off the western coast of Mexico. Proc Boston Soc Nat Hist 14:61–302Google Scholar
  25. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  26. Hackett SJ (1996) Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Mol Phylogenet Evol 5:368–382CrossRefPubMedGoogle Scholar
  27. Howell SNG, Webb S (1995) A guide to the birds of Mexico and northern Central America. Oxford University, New YorkGoogle Scholar
  28. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  29. Johnson KP, Clayton DH (2000) A molecular phylogeny of the dove genus Zenaida: Mitochondrial and nuclear DNA sequences. Condor 102:864–870CrossRefGoogle Scholar
  30. Johnson KJ, Sorenson MD (1998) Comparing molecular evolution in two mitochondrial protein coding genes (Cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini). Mol Phyl Evol 10:82–94CrossRefGoogle Scholar
  31. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kraaijeveld K, Kraaijeveld-Smit FJ, Maan ME (2011) Sexual selection and speciation: the comparative evidence revisited. Biol Rev 86:367–377CrossRefPubMedGoogle Scholar
  33. Labarthe N, Serrão ML, Melo YF, Oliveira SJ, Lourenço-de-Oliveira R (1998) Potential vectors of Dirofilaria immitis (Leidy, 1856) in Itacoatiara, oceanic region of Niterói municipality, State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 93:425–432CrossRefPubMedGoogle Scholar
  34. Lawrence GN (1871) Descriptions of new species of birds from Mexico, Central America and South America, with a note on Rallus longirostris. Ann Lyc Nat Hist 10:1–21Google Scholar
  35. Librado P, Rozas J (2009) DnasSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  36. Lijtmaer DA, Kerr KC, Stoeckle MY, Tubaro PL (2012) DNA barcoding birds: from field collection to data analysis. In: Kress WJ, Erickson DL (eds) DNA barcodes: methods and protocols. Springer, New York, pp 127–152CrossRefGoogle Scholar
  37. Lim HC, Chua VL, Benham PM et al (2014) Divergence history of the Rufous-tailed Tailorbird (Orthotomus sericeus) of Sundaland: implications for the biogeography of Palawan and the taxonomy of island species in general. Auk 131:629–642CrossRefGoogle Scholar
  38. Martínez-Gómez JE, Curry RL (1996) The conservation status of the Socorro Mockingbird Mimodes graysoni in 1993–1994. Bird Conserv Int 6:271–283CrossRefGoogle Scholar
  39. Martínez-Gómez JE, Barber B, Peterson AT (2005) Phylogenetic position and generic placement of the Socorro wren Thryomanes sissonii. Auk 122:50–55CrossRefGoogle Scholar
  40. Martínez-Gómez JE, Matías-Ferrer N, Sehgal RNM, Escalante P (2015) Phylogenetic placement of the critically endangered Townsend’s Shearwater (Puffinus auricularis auricularis): evidence for its conspecific status with Newell’s Shearwater (Puffinus a. newelli) and a mismatch between genetic and phenotypic differentiation. J Ornithol 156:1025–1034CrossRefGoogle Scholar
  41. McKay BD, Zink RM (2015) Sisyphean evolution in Darwin’s finches. Biol Rev Camb Philos Soc 90:689–698CrossRefPubMedGoogle Scholar
  42. Mclellan ME (1926) Expedition to the Revillagigedo islands, Mexico, in 1925, VI. The birds and mammals. Proc Calif Acad Sci 15:279–322Google Scholar
  43. Mulcahy DG, Martínez-Gómez JE, Aguirre-León G, Cervantes-Pasqualli JA, Zug GR (2014) Rediscovery of an endemic vertebrate from the remote Islas Revillagigedo in the Eastern Pacific Ocean: the Clarión Nightsnake lost and found. PLoS One 9(5):e97682CrossRefPubMedPubMedCentralGoogle Scholar
  44. Navarro-Sigüenza AG, Peterson AT (2004) An alternative species taxonomy of the birds of Mexico. Biota Neotropica 4(2):1–32 BN03504022004 CrossRefGoogle Scholar
  45. Nelson EW (1928) Descriptions of three new subspecies of birds from Mexico and Guatemala. Proc Biol Sot Wash 41:153–156Google Scholar
  46. Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67CrossRefPubMedGoogle Scholar
  47. Patel S, Waugh J, Millar CD, Lambert DM (2010) Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Mol Ecol Res 10:431–438CrossRefGoogle Scholar
  48. Peterson AT, Navarro-Sigüenza AG (1999) Alternate Species concepts as bases for determining priority conservation areas. Conserv Biol 13:427–431CrossRefGoogle Scholar
  49. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMedGoogle Scholar
  50. Rambaut A, Drummond AJ (2013) Tracer v1.6. ( Scholar
  51. Remsen JV, Schirtzinger EE, Ferraroni A, Silveira LF, Wright TF (2013) DNA-sequence data require revision of the parrot genus Aratinga (Aves: Psittacidae). Zootaxa 3641:296–300CrossRefPubMedGoogle Scholar
  52. Rheindt FE, Szekely T, Edwards S, Lee PLM et al (2011) Conflict between genetic and phenotypic differentiation: the evolutionary history of a ‘lost and rediscovered’ shorebird. PLoS One 6(11):e26995CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ridgway R (1887) A manual of North American birds. Lippincott, PhiladelphiaCrossRefGoogle Scholar
  54. Ridgway R (1916) The birds of North and Middle America, Part VII. Bull US Nat Mus 50:1–834CrossRefGoogle Scholar
  55. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  56. Schweizer M, Hertwig ST, Seehausen O (2014) Diversity versus disparity and the role of ecological opportunity in a continental bird radiation. J Biogeogr 41:1301–1312CrossRefGoogle Scholar
  57. Sclater PL (1859) Description of two new species of American Parrots. Ann Mag Nat Hist 4:224–226Google Scholar
  58. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phyl Evol 12:105–114CrossRefGoogle Scholar
  59. StatSoft, Inc. (2004) STATISTICA (data analysis software system), version 7.
  60. Stotz DF, Fitzpatrick JW, Parker TA, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago, ChicagoGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tarr CL, Fleischer RC (1993) Mitochondrial-DNA variation and evolutionary relationships in the Amakihi complex. Auk 110:825–831CrossRefGoogle Scholar
  63. Tavares ES, Goncalves P, Miyaki CY, Baker AJ (2011) DNA barcode detects high genetic structure within Neotropical Bird Species. PLoS One 6(12):E28543CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LD, Collar NJ (2010) Quantitative criteria for species delimitation. Ibis 152:724–746CrossRefGoogle Scholar
  65. Urantowka AD, Mackiewicz P (2016) Complete mitochondrial genome of white-eyed parakeet (Psittacara leucophthalmus): the basal species to other Psittacara. Mit DNA B Resour 1:895–897Google Scholar
  66. Urantowka AD, Kroczak AM, Strzała T (2014) Complete mitochondrial genome of endangered Socorro Conure (Aratinga brevipes)—Taxonomic position of the species and its relationship with Green Conure. Mit DNA 25:365–367CrossRefGoogle Scholar
  67. Urantowka AD, Mackiewicz P, Kroczak AM, Strzała T (2016a) Complete mitochondrial genome of Red-throated Conure (Psittacara rubritorquis): its comparison with mitogenome of Socorro Conure (Psittacara brevipes). Mit DNA A DNA Mapp Seq Anal 27:3354–3355Google Scholar
  68. Urantowka AD, Mackiewicz P, Strzała T (2016b) Complete mitochondrial genome of Mitred Conure (Psittacara mitratus): its comparison with mitogenome of Socorro Conure (Psittacara brevipes). Mit DNA A DNA Mapp Seq Anal 27:3363–3364Google Scholar
  69. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328CrossRefPubMedGoogle Scholar
  70. Wright NA, Steadman DW (2012) Insular avian adaptations on two Neotropical continental islands. J Biogeogr 39:1891–1899CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zink RM (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc Biol Sci 271:561–564CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Red de Interacciones MultitróficasInstituto de Ecología, A. C.XalapaMexico
  2. 2.Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad De MéxicoMexico
  3. 3.Endémicos Insulares, A.C.CoatepecMexico

Personalised recommendations