Skip to main content
Log in

A widespread commensal loses its identity: suggested taxonomic revision for Indotyphlops braminus (Scolecophidia: Typhlopidae) based on molecular data

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The widespread human commensal blindsnake species Indotyphlops braminus is currently the only known obligate parthenogenetic snake species. It is also known to be triploid. However, much of these data is from specimens collected outside India which is the native range of this species. Polyploidy and parthenogenesis are often associated with hybridization in amphibians and lizards. In this study, we generated nuclear and mitochondrial data from multiple Indotyphlops lineages from across peninsular India and investigated the possible hybrid origin of I. braminus. Species delimitation suggested three putative species, one of which was I. pammeces and the other two morphologically matched I. braminus. One of these was confined to the wet zone (high rainfall areas) while the other was largely distributed in the dry zone. There was wide discordance in the relationships between these lineages across markers and different tree building approaches suggesting past or ongoing geneflow. The statistical test for hybridization also implied geneflow across these three lineages. Furthermore, the dry zone I. braminus appears to be true I. braminus as the topotypic material falls within this clade. These results suggest that the widespread, commensal, and parthenogenetic Indotyphlops is a separate species from I. braminus, and further investigation is required to determine diagnostic morphological characters for a species description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used in this study are currently available from the corresponding author on reasonable request.

References

  • Adalsteinsson, S. A., Branch, W. R., Trape, S., Vitt, L. J., & Hedges, S. B. (2009). Molecular phylogeny, classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata). Zootaxa, 50, 1–50. https://doi.org/10.11646/%25x

    Google Scholar 

  • Alix, K., Gerard, P. R., Schwarzacher, T., & Heslop-harrison, J. S. P. (2017). Polyploidy and interspecific hybridization: Partners for adaptation, speciation and evolution in plants. Annals of Botany, 120, 183–194. https://doi.org/10.1093/aob/mcx079

    Article  Google Scholar 

  • Bogart, J. P. (1980). Evolutionary implications of polyploidy in amphibians and reptiles. Basic Life Sciences, 13, 341–378.

    CAS  Google Scholar 

  • Booth, W., & Schuett, G. W. (2016). The emerging phylogenetic pattern of parthenogenesis in snakes. Biological Journal of Linnean Society, 118, 172–186.

    Article  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), 1–6. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  Google Scholar 

  • Boulenger, G. A. (1898). Descriptions of two new blind snakes. Ann. Mag. Nat. Hist., (7) 1: 124.

  • Bryant, D., & Moulton, V. (2004). Neighbor-net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265. https://doi.org/10.1093/molbev/msh018

    Article  CAS  Google Scholar 

  • Chen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor Z. Trends in Plant Science, 15, 1–28. https://doi.org/10.1016/j.tplants.2009.12.003

    Article  CAS  Google Scholar 

  • Chifman, J., & Kubatko, L. (2015). Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology, 374, 35–47. https://doi.org/10.1016/j.jtbi.2015.03.006

    Article  Google Scholar 

  • Cole, C. J., Dessauer, H. C., & Barrowclough, G. F. (1988). Hybrid origin of a unisexual species of whiptail lizard, Cnemidophorus neomexicanus, in western North America: New evidence and a review. American Museum Novitates, 2905, 1–38.

    Google Scholar 

  • Cole, C. J., Taylor, H. L., Baumann, D. P., & Baumann, P. (2014). Neaves’ whiptail lizard: The first known tetraploid parthenogenetic tetrapod (Reptilia: Squamata: Teiidae). Breviora, 539, 1–20.

    Article  Google Scholar 

  • Daudin, F. M. (1803). Histoire Naturelle, Générale et Particulière des Reptiles. vol. 7. Dufart.

  • Dawley, R. M., & Bogart, J. P. (1989). The evolution and ecology of unisexual vertebrates. The New York State Museum.

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075

  • Earl, D. A., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.

    Article  CAS  Google Scholar 

  • Fretey, T., & Dubois, A. (2021). It is high time that taxonomists follow the Code. 2. The Virgotyphlops case (Serpentes, Typhlopidae). Bionomina, 21(1), 117–119. https://doi.org/10.11646/bionomina.21.1.7

  • Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 34, 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421

    Article  Google Scholar 

  • Ghiselli, F., Milani, L., Scali, V., & Passamonti, M. (2007). The Leptynia hispanica species complex (Insecta Phasmida): Polyploidy, parthenogenesis, hybridization and more. Molecular Ecology., 16, 4256–4268. https://doi.org/10.1111/j.1365-294X.2007.03471.x

    Article  CAS  Google Scholar 

  • Grismer, J. L., Bauer, A. M., Grismer, L. L., Thirakhupt, K., Aowphol, A., Oaks, J. R., Wood, P. L., Onn, C. K., Thy, N., Cota, M., & Jackman, T. (2014). Multiple origins of parthenogenesis, and a revised species phylogeny for the Southeast Asian butterfly lizards Leiolepis. Biological Journal of Linnean Society., 113, 1080–1093. https://doi.org/10.1111/bij.12367

    Article  Google Scholar 

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology, 59(3), 307–321.

  • Günther, A. (1864). The Reptiles of British India. London (Taylor and Francis).

  • Hall, W. P. (1970). Three probable cases of parthenogenesis in lizards (Agamidae, Chameleontidae, Gekkonidae). Experientia, 26, l271–l273.

    Article  Google Scholar 

  • Harrison, R. G. (1993). Hybrid zones and the evolutionary process. Oxford University Press.

    Google Scholar 

  • Heled, J., Bouckaert, R., Drummond, A. J., & Xie, W. (2013). * BEAST in BEAST 2.0 Estimating Species Trees from Multilocus Data. Genetics, 164, 1–18. https://doi.org/10.1093/genetics/164.4.1567

    Google Scholar 

  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  Google Scholar 

  • Joly, S. (2012). JML: Testing hybridization from species trees. Molecular Ecology Resources, 12(1), 179–184. https://doi.org/10.1111/j.1755-0998.2011.03065.x

    Article  Google Scholar 

  • Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630–1638.

    Article  CAS  Google Scholar 

  • Kearney, M., Fujita, M. K., & Ridenour, J. (2009). Lost sex in reptiles: Constraints and correlations. In I. Schön, K. Martens, & P. van Dijk (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 447–474). Sprinter Scientific.

    Chapter  Google Scholar 

  • Kluge, A. G., & Eckardt, M. J. (1969). Hemidactylus garnoti Dumeril and Bibron, a triploid all-female species of gekkonid lizard. Copeia, 1969(4), 651–664.

    Article  Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.

    Article  CAS  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260

    Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  Google Scholar 

  • Lowe, C. H., & Wright, J. (1966). Chromosomes and karyotypes of cnemidophorine teiid lizards. Mammals Chromosomes Newsletter, 22, 199–200.

    Google Scholar 

  • Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46, 523–536. https://doi.org/10.1093/sysbio/46.3.523

    Article  Google Scholar 

  • Mayr, E. (1963). Animal Species and Evolution. Harvard University Press.

    Book  Google Scholar 

  • Mcdowell, S.B. (1974). A catalogue of the snakes of New Guinea and the Solomons, with Special Reference to those in the Bernice P. Bishop Museum, Part I. Scolecophidia. Journal of Herpetology, 8, 1. https://www.jstor.org/stable/1563076

  • Mendes, F. K., Hahn, Y., & Hahn, M. W. (2016). Gene tree discordance can generate patterns of diminishing convergence over time. Molecular Biology and Evolution, 33, 3299–3307. https://doi.org/10.1093/molbev/msw197

    Article  CAS  Google Scholar 

  • Miralles, A., Marin, J., Markus D., Herrel, A., Hedges, S. B., & Vidal, N. (2018). Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology. 31(12), 1782–1793. https://doi.org/10.1111/jeb.13373

    Article  Google Scholar 

  • Neaves, W. B., & Baumann, P. (2011). Unisexual reproduction among vertebrates. Trends in Genetics27(3), 81–88. https://doi.org/10.1016/j.tig.2010.12.002

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution32(1), 268–274. https://doi.org/10.1093/molbev/msu300

  • Nussbaum, R. A. (1980). The brahminy blind snake (Ramphotyphlops braminus) in the Seychelles Archipelago: distribution, variation, and further evidence for parthenogenesis. Herpetologica, 215–221. http://www.jstor.org/stable/3891816

  • Ota, H., Hikida, T., Masafumi, M., Akira, M., & Wynn, A. (1991). Morphological variation, karyotype and reproduction of the parthenogenetic blind snake, Ramphotyphlops braminus, from the insular region of East Asia and Saipan. Amphibia-Reptilia, 12, 181–193.

    Article  Google Scholar 

  • Patawang, I., Tanomtong, A., Kaewmad, P., Chuaynkern, Y., & Duengkae, P. (2016). New record on karyological analysis and first study of NOR localization of parthenogenetic brahminy blind snake, Ramphotyphlops braminus (Squamata, Typhlopidae) in Thailand. Nucleus, 59, 61–66. https://doi.org/10.1007/s13237-015-0154-z

    Article  Google Scholar 

  • Pennock, L. A. (1965). Triploidy in parthenogenetic species of the teiid lizard, genus Cnemidophorus. Science, 149, 539–540.

    Article  CAS  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  Google Scholar 

  • Pyron, R. A., & Wallach, V. (2014). Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence, Zootaxa. https://doi.org/10.11646/zootaxa.3829.1.1

  • QGIS.org. (2022). QGIS Geographic Information System. QGIS Association. http://www.qgis.org

  • Rambaut, A., & Grassly, N. C. (1997). Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in the Biosciences, 13, 235–238. https://doi.org/10.1093/bioinformatics/13.3.235

    CAS  Google Scholar 

  • Rambaut, A., & Drummond, A. J. (2013). Tracer v1.6. University of Edinburgh, Edinburgh, UK. Available at: http://tree.bio.ed.ac.uk/software/tracer/

  • Russell, P. (1796). An account of Indian serpents, collected on the Coast of Coromandel; containing descriptions and drawings of each species; together with experiments and remarks on their several poisons. George Nicol, London, vii+91 pp., 46 pls.

  • Saura, A., Lokki, J., & Suomalainen, E. (1993). Origin of polyploidy in parthenogenetic weevils. Journal of Theoretical Biology, 163, 449–456.

    Article  Google Scholar 

  • Schultz, R. J. (1969). Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. The American Naturalist, 103, 605–619.

    Article  Google Scholar 

  • Schwenk, K., Brede, N., & Streit, B. (2008). Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philosophical Transactions of the Royal Society, 363, 2805–2811. https://doi.org/10.1098/rstb.2008.0055

    Article  Google Scholar 

  • Sidharthan, C., & Karanth, K. P. (2021). India’s biogeographic history through the eyes of blindsnakes- Filling the gaps in the global typhlopoid phylogeny. Molecular Phylogenetics and Evolution. Apr;157:107064. https://doi.org/10.1016/j.ympev.2020.107064

  • Sinclair, E. A., Pramuk, J. B., Bezy, R. L., Crandall, K. A., & Sites, J. W. (2010). DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evolution, 64, 1346–1357.

    Google Scholar 

  • Sites, J. W., Jr., Reeder, T. W., & Wiens, J. J. (2011). Phylogenetic insights on evolutionary novelties in lizards and snakes: Sex, birth, bodies, food, and venom. Annual Review of Ecology, Evolution, and Systematics, 47, 227–244. https://doi.org/10.1146/annurev-ecolsys-102710-145051

    Article  Google Scholar 

  • Smith, S. G. (1971). Parthenogenesis and polyploidy in beetles. American Zoologist, 11, 341–349.

    Article  Google Scholar 

  • Solís-Lemus, C., Knowles, L. L., & Ané, C. (2015). Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution, 69, 492–507. https://doi.org/10.1111/evo.12582

    Article  Google Scholar 

  • Stephens, M., Smith, N., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics, 68, 978–989. https://doi.org/10.1086/319501

    Article  CAS  Google Scholar 

  • Swofford, D. (2002). PAUP*—Phylogenetic analysis using parsimony and other methods, Version 4. Sinauer Associates.

    Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30 (12), 2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Trifinopoulos, J., Nguyen, L., Haeseler, A. V., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, 232–235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  Google Scholar 

  • Vidal, N., Marin, J., Morini, M., Donnellan, S., Branch, W. R., Thomas, R., Vences, M., Wynn, A., Cruaud, C., & Hedges, S. B. (2010). Blindsnake evolutionary tree reveals long history on Gondwana. Biology Letters, 6, 558–561. https://doi.org/10.1098/rsbl.2010.0220

    Article  Google Scholar 

  • Wakeley, J. (ed). (2009). Coalescent theory: An introduction. Roberts and Company.

  • Wallach, V. (2009). Ramphotyphlops braminus (Daudin): A synopsis of morphology, taxonomy, nomenclature, and distribution (Serpentes: Typhlopidae). Hamadryad, 34, 34–61.

    Google Scholar 

  • Wallach, V. (2020). How to easily identify the flowerpot blindsnake, Indotyphlops braminus (Daudin, 1803), with proposal of a new genus (Serpentes: Typhlopidae) [WWW Document]. www.podarcis.nl

  • Wright, J. W., & Lowe, C. H. (1968). Weeds, polyploids, parthenogenesis, and the geographical and ecological distribution of all-female species of Cnemidophorus. Copeia, 1968(1), 128–138.

    Article  Google Scholar 

  • Wynn, A., Cole, C. J., & Gardner, A. L. (1987). Apparent triploidy in the unisexual brahminy blind snake, Ramphotyphlops braminus. American Museum Novitates, 2868, 1–7.

    Google Scholar 

  • Zhang, C., Zhang, D. X., Zhu, T., & Yang, Z. (2011). Evaluation of a Bayesian coalescent method of species delimitation. Systematic Biology, 60, 747–761. https://doi.org/10.1093/sysbio/syr071

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the forest departments for granting us collection permits for this project. We also thank Aniruddha Datta Roy, V. Deepak, R. Chaitanya, Amrita Balan, and Aravind for collecting samples.

Funding

The project was funded by the DBT-IISc partnership program (22–0303-0007–05-469). Forest department permits were obtained for the collection of specimens.

Author information

Authors and Affiliations

Authors

Contributions

Chinta Sidharthan and K. Praveen Karanth contributed equally to the study conception and design. Material preparation, molecular data generation, and large parts of the analysis were performed by CS. Species delimitation and morphological data collection were carried out by Pragyadeep Roy. Sample collection was carried out by CS, KPK, and SN. SN built the distribution map. The first draft of the manuscript was written largely by CS, with certain section of methods and results written by PR. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chinta Sidharthan.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 530 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidharthan, C., Roy, P., Narayanan, S. et al. A widespread commensal loses its identity: suggested taxonomic revision for Indotyphlops braminus (Scolecophidia: Typhlopidae) based on molecular data. Org Divers Evol 23, 169–183 (2023). https://doi.org/10.1007/s13127-022-00577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-022-00577-5

Keywords

Navigation