Skip to main content

Advertisement

Log in

Interactive effects of climate and forest canopy cover on Goshawk productivity

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

In the current scenario of human-induced environmental changes, boreal forest biodiversity appears to be threatened by both deforestation for timber production and climate change. A northern species which has experienced a decline due to ongoing habitat degradation in Finland is the Northern Goshawk (Accipiter gentilis), a forest-dwelling avian predator that inhabits mostly mature coniferous forests. In order to uncover possible interactive effects of climate and landscape structure on this species, we tested whether temperature and precipitation affect Goshawk reproductive performance differentially in closed (i.e. forest) or open (mainly forest–farmland mosaics) habitats, accounting for land cover at different distances from nests (250, 500, 1000 and 2500 m). Long-term data on brood size and individual chick weight were used to describe breeding success over an 18 year period. Brood size was negatively associated with March and May temperature and positively with June temperature, but no trends related to landscape structure were identified. Chick body condition was negatively affected by high forest cover closest to the nest (250 m), but negative effects of June precipitation on this variable proved to be significantly greater in open than in closed habitats, with results consistent at different scales, i.e. precipitation had greater negative effects on chick body condition in open than in closed landscapes. Precipitation is forecast to increase in the region as a result of climate change, hence forest cover could exert a positive role in mitigating adverse effects of unfavorable climatic conditions. Outcomes of this study may be used to inform sustainable timber harvest management strategies.

Zusammenfassung

Interaktive Effekte von Klima und Baumkronendichte auf den Fortpflanzungserfolg des Habichts Auf der Palette der von Menschen verursachten Umweltveränderungen scheinen vor allem zwei Faktoren die Biodiversität borealer Wälder zu bedrohen: die Rodung für Nutzholzproduktion und die Klimaveränderung. Der Habicht (Accipiter gentilis) ist eine im Norden vorkommende Art, deren Rückgang in Finnland auf die ständige Verkleinerung ihrer Habitate zurückzuführen ist. Sie sind Raubvögel, die in erster Linie in hohen Koniferen-Wäldern leben. Um mögliche interaktive Effekte von Klima und Landschaftsstruktur auf diese Art aufzudecken, testeten wir, ob Temperatur und Niederschlag die Fortpflanzungsrate des Habichts beeinflussen. Diese Untersuchungen liefen vergleichend in geschlossenen (z.B. Wäldern) und in offenen (überwiegend von Waldflecken durchsetzte Äcker) Lebensräumen und unter Berücksichtigung des Bewuchses in unterschiedlichen Entfernungen vom Nest (250m, 500m, 1000m und 2500m). Über längere Zeitspannen erhobene Daten für die Gelegegrößen und individuellen Kükengewichte dienten als Grundlage für die Feststellung und Beschreibung des Fortpflanzungserfolgs über einen Zeitraum von 18 Jahren. Die Gelegegrößen korrelierten negativ mit der Temperatur in März und Mai und positiv mit der im Juni; ein Zusammenhang mit der Landschaftsstruktur konnte nicht festgestellt werden. Die Körperverfassung der Küken wurde negativ von Wäldern mit hohen Baumkronen in größter Nest-Nähe (250m) beeinflusst; aber für diese Variable stellten sich die negativen Effekte von Niederschlägen im Juni in offenen Habitaten als signifikant größer heraus als in geschlossenen Lebensräumen, wobei diese Ergebnisse über unterschiedliche Größenordnungen hinweg konsistent waren. Das heißt, auf die Körperverfassung der Küken hatten Niederschläge in offenen Landschaften negativere Auswirkungen als in geschlossenen Lebensräumen. Für diese Region werden künftig stärkere Niederschläge als Folge von Klimaveränderungen vorhergesagt. Der Waldbedeckung könnte daher eine positive Rolle dabei zufallen, die entgegengesetzten Auswirkungen ungünstiger Klimabedingungen abzuschwächen. Die Ergebnisse dieser Studie helfen eventuell, im Management von Nutzholz-Anbau zu nachhaltigeren Strategien zu kommen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo MB, Alagador D, Cabeza M, Nogues-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Björklund H, Valkama J, Tomppo E, Laaksonen T (2015) Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS One 10:e0137877

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloxton TD (2002) Prey abundance, space use, demography, and foraging habitat of Northern Goshawks in Western Washington. Dissertation, University Of Washington

  • Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83

    Article  PubMed  Google Scholar 

  • Burgas D, Byholm P, Parkkima T (2014) Raptors as surrogates of biodiversity along a landscape gradient. J Appl Ecol 51:786–794

    Article  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie J, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Byholm P, Brommer JE, Saurola P (2002a) Scale and seasonal sex-ratio trends in northern Goshawk Accipiter gentilis broods. J Avian Biol 33:399–406

    Article  Google Scholar 

  • Byholm P, Ranta E, Kaitala V, Lindén H, Saurola P, Wikman M (2002b) Resource availability and Goshawk offspring sex ratio variation: a large-scale ecological phenomenon. J Anim Ecol 71:994–1001

    Article  Google Scholar 

  • Byholm P, Saurola P, Linden H, Wikman M (2003) Causes of dispersal in Northern Goshawks (Accipiter gentilis) in Finland. Auk 120:706–716

    Article  Google Scholar 

  • Byholm P, Nikula A, Kentta J, Taivalmäki J (2007) Interactions between habitat heterogeneity and food affect reproductive output in a top predator. J Anim Ecol 76:392–401

    Article  PubMed  Google Scholar 

  • Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cramp S, Simmons KEL (1980) Handbook of the birds of Europe the Middle East and North Africa. The birds of the western Palearctic. Volume 2. Hawks to bustards. Oxford University Press, Oxford

    Google Scholar 

  • Dodson JC, Moy NJ, Bulluck LP (2016) Prothonotary Warbler nestling growth and condition in response to variation in aquatic and terrestrial prey availability 6:7462–7474

    Google Scholar 

  • Fairhurst GD, Bechard MJ (2005) Relationships between winter and spring weather and Northern Goshawk (Accipiter gentilis) reproduction in Northern Nevada. J Raptor Res 39:229–236

    Google Scholar 

  • Finn SP, Marzluff JM, Varland DE (2002) Effects of landscape and local habitat attributes on northern Goshawk site occupancy in western Washington. For Sci 48:427–436

    Google Scholar 

  • Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Bruehl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545

    Article  PubMed  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582

    Article  PubMed  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378

    Article  CAS  PubMed  Google Scholar 

  • Hardey J, Crick HQP, Wernham CV, Riley HT, Etheridge B, Thompson DBA (2006) Raptors: a field guide to survey and monitoring. The Stationery Office Limited, Edinburgh

    Google Scholar 

  • Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B (2009) Projected impacts of climate change on a continent-wide protected area network. Ecol Lett 12:420–431

    Article  PubMed  Google Scholar 

  • Honkala J, Valkama J, Saurola P (2014) Breeding and population trends of common raptors and owls in Finland in 2012. The yearbook of the Linnut magazine 2013:55–65

    Google Scholar 

  • Inger R, Gregory R, Duffy JP, Stott I, Vorisek P, Gaston KJ (2015) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36

    Article  PubMed  Google Scholar 

  • IPCC (2007) Impacts, Adaptation and Vulnerability, Working Group II contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219

    Article  CAS  Google Scholar 

  • Jylhä K, Tuomenvirta H, Ruosteenoja K (2004) Climate change projections for Finland during the 21st century. Boreal Environ Res 9:127–152

    Google Scholar 

  • Katzenberger J, Gareth T, Ann K, Arjun A (2015) Black sparrowhawk brooding behaviour in relation to chick age and weather variation in the recently colonised Cape Peninsula. S Afr J Ornithol 156:903–913

    Article  Google Scholar 

  • Kenward RE (1982) Goshawk hunting behaviour, and range size as a function of food and habitat availability. J Anim Ecol 51:69–80

    Article  Google Scholar 

  • Kostrzewa A, Kostrzewa R (1990) The relationship of spring and summer weather with density and breeding performance of the Buzzard Buteo buteo, Goshawk Accipiter gentilis and Kestrel Falco tinnunculus. Ibis 132:550–559

    Article  Google Scholar 

  • Krüger O, Lindström J (2001) Habitat heterogeneity affects population growth in Goshawk Accipiter gentilis. J Anim Ecol 70:173–181

    Article  Google Scholar 

  • Kudo T, Ozaki K, Takao G, Sakai T, Yonekawa H, Ikeda K (2005) Landscape analysis of northern Goshawk breeding home range in northern Japan. J Wildl Manag 69:1229–1239

    Article  Google Scholar 

  • Lehikoinen A, Linden A, Byholm P, Ranta E, Saurola P, Valkama J, Kaitala V, Linden H (2013) Impact of climate change and prey abundance on nesting success of a top predator, the Goshawk. Oecologia 171:283–293

    Article  PubMed  Google Scholar 

  • Ludwig GX, Alatalo RV, Helle P, Linden H, Lindström J, Siitari H (2006) Short- and long-term population dynamical consequences of asymmetric climate change in black grouse. P Roy Soc B-Biol Sci 273:2009–2016

    Article  Google Scholar 

  • Marjakangas A (1990) A suggested antipredator function for snow-roosting behaviour in the black grouse tetrao tetrix. Orn Scand 21:77–78

    Article  Google Scholar 

  • Mazziotta A, Trivino M, Tikkanen O, Kouki J, Strandman H, Mönkkönen M (2016) Habitat associations drive species vulnerability to climate change in boreal forests. Clim Chang 135:585–595

    Article  Google Scholar 

  • Morecroft MD, Crick HQP, Duffield SJ, Macgregor NA (2012) Resilience to climate change: translating principles into practice. J Appl Ecol 49:547–551

    Article  Google Scholar 

  • Moser BW, Garton EO (2009) Short-term effects of timber harvest and weather on Northern Goshawk reproduction in Northern Idaho. J Raptor Res 43:1–10

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, London

    Google Scholar 

  • Newton I, McGrady MJ, Oli MK (2016) A review of survival estimates for raptors and owls. Ibis 158:227–248

    Article  Google Scholar 

  • Nielsen JT, Moller AP (2006) Effects of food abundance, density and climate change on reproduction in the sparrowhawk Accipiter nisus. Oecologia 149:505–518

    Article  PubMed  Google Scholar 

  • Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev-Clim Chang 5:317–335

    Article  Google Scholar 

  • Oliver TH, Marshall HH, Morecroft MD, Brereton T, Prudhomme C, Huntingford C (2015) Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat Clim Chang 5:941

    Article  Google Scholar 

  • Olsen PD, Olsen J (1989) Breeding of the peregrine falcon Falco peregrinus. 3. Weather, nest quality and breeding success. Emu 89:6–14

    Article  Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Rutz C (2008) The establishment of an urban bird population. J Anim Ecol 77:1008–1019

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schmiegelow FKA, Monkkonen M (2002) Habitat loss and fragmentation in dynamic landscapes: avian perspectives from the boreal forest. Ecol Appl 12:375–389

    Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass–size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  • Smedshaug CA, Lund SE, Brekke A, Sonerud GA, Rafoss T (2002) The importance of the farmland–forest edge for area use of breeding Hooded Crows as revealed by radio telemetry. Ornis Fenn 79:1–13

    Google Scholar 

  • Solonen T (2008) Larger broods in the Northern Goshawk Accipiter gentilis near urban areas in southern Finland. Ornis Fenn 85:118–125

    Google Scholar 

  • Thackeray SJ, Hemming D, Bell JR, Botham MS, Burthes S, Helaout P, John DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, Brereton TM, Carvalhos L, Clutton-Brock TH, Duck C, Edwards M, Elliot JM, Hall SJG, Harrington R, Pearce-Higgins JW, Høye TT, Kruuk LEB, Pemberton JM, Sparks TH, Thompson PM, White I, Winfield IJ, Wanless S (2016) Differences in phenological responses to climate change among species can desynchronise ecological interactions. Nature 535:241–245

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tornberg R, Mönkkönen M, Kivelä SM (2009) Landscape and season effects on the diet of the Goshawk. Ibis 151:396–400

    Article  Google Scholar 

  • Tornberg R, Lindén A, Byholm P, Ranta E, Valkama J, Helle P, Lindén H (2013) Coupling in goshawk and grouse population dynamics in Finland. Oecologia 171:863–872

    Article  PubMed  Google Scholar 

  • Van der Jeugd HP, Larsson K (1998) Pre-breeding survival of barnacle geese Branta leucopsis in relation to fledgling characteristics. J Anim Ecol 67:953–966

    Article  CAS  PubMed  Google Scholar 

  • Verboom J, Schippers P, Cormont A, Sterk M, Vos CC, Opdam PFM (2010) Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landsc Ecol 25:1289–1298

    Article  Google Scholar 

  • Virkkala R (2016) Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change? Biodivers Conserv 25:151–167

    Article  Google Scholar 

  • Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353

    Article  Google Scholar 

  • Widén P (1989) The hunting habitats of Goshawks Accipiter gentilis in boreal forests of central Sweden. Ibis 131:205–213

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Finnish Ministry of Environment for financing monitoring of birds of prey and voluntary bird ringers that conduct the activities every year. We also thank the Finnish Meteorological Institute for providing climatic data and Heidi Björklund for her contribution in data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Conenna.

Additional information

Communicated by O. Krüger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conenna, I., Valkama, J. & Chamberlain, D. Interactive effects of climate and forest canopy cover on Goshawk productivity. J Ornithol 158, 799–809 (2017). https://doi.org/10.1007/s10336-017-1432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1432-0

Keywords

Navigation