Journal of Ornithology

, Volume 156, Supplement 1, pp 275–286 | Cite as

Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata)

  • Adrián RegosEmail author
  • Manuela D’Amen
  • Sergi Herrando
  • Antoine Guisan
  • Lluís Brotons


The current challenge in a context of major environmental changes is to anticipate the responses of species to future landscape and climate scenarios. In the Mediterranean basin, climate change is one the most powerful driving forces of fire dynamics, with fire frequency and impact having markedly increased in recent years. Species distribution modelling plays a fundamental role in this challenge, but better integration of available ecological knowledge is needed to adequately guide conservation efforts. Here, we quantified changes in habitat suitability of an early-succession bird in Catalonia, the Dartford Warbler (Sylvia undata), which is globally evaluated as Near Threatened in the IUCN Red List. We assessed potential changes in species distributions between 2000 and 2050 under different fire management and climate change scenarios, and described landscape dynamics using a spatially-explicit fire-succession model that simulates fire impacts in the landscape and post-fire regeneration (MEDFIRE model). Dartford Warbler occurrence data were acquired at two different spatial scales from: (1) the Atlas of European Breeding Birds (EBCC) and (2) the Catalan Breeding Bird Atlas (CBBA). Habitat suitability was modelled using five widely-used modelling techniques in an ensemble forecasting framework. Our results indicated considerable habitat suitability losses (ranging between 47 and 57 % in baseline scenarios), which were modulated to a large extent by fire regime changes derived from fire management policies and climate changes. Such result highlighted the need for taking the spatial interaction between climate changes, fire-mediated landscape dynamics and fire management policies into account for coherently anticipating habitat suitability changes of early-succession bird species. We conclude that fire management programs need to be integrated into conservation plans to effectively preserve sparsely forested and early succession habitats and their associated species in the face of global environmental change.


Bird conservation Global change scenarios Multiscale hierarchical modelling MEDFIRE model Fire-prone ecosystems Forest biomass extraction 



We want to thank the support and dedication of our colleagues Miquel De Cáceres, Dani Villero and Rui Fernandes. Partial funding supporting this project was received from the EU BON project (308454; FP7-ENV-2012, European Commission), BIONOVEL CGL2011-29539, CONSOLIDER-MONTES CSD2008-00040 projects and the TRUSTEE project (RURAGRI ERA-NET 235175). M.D. was supported by the FP7-PEOPLE-2012-IEF Marie Curie Action (Project number 327987). A.G. was supported by the grant SESAM’ALP’ of the Swiss National Science Foundation (nr 31003A-1528661).

Supplementary material

10336_2015_1174_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 54 kb)


  1. Abbas D, Current D, Ryans M et al (2011) Harvesting forest biomass for energy—an alternative to conventional fuel treatments: trials in the Superior National Forest, USA. Biomass Bioenerg 35:4557–4564. doi: 10.1016/j.biombioe.2011.06.030 CrossRefGoogle Scholar
  2. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi: 10.1016/j.tree.2006.09.010 PubMedCrossRefGoogle Scholar
  3. Arcos JM, Bécares J, Villero D et al (2012) Assessing the location and stability of foraging hotspots for pelagic seabirds: an approach to identify marine Important Bird Areas (IBAs) in Spain. Biol Conserv 156:30–42. doi: 10.1016/j.biocon.2011.12.011 CrossRefGoogle Scholar
  4. Becker DR, Larson D, Lowell EC (2009) Financial considerations of policy options to enhance biomass utilization for reducing wildfire hazards. For Policy Econ 11:628–635. doi: 10.1016/j.forpol.2009.08.007 CrossRefGoogle Scholar
  5. Bibby CJ (1978) Conservation of the Dartford Warbler on english lowland heaths: A review. Biol Conserv 13(4):299–307CrossRefGoogle Scholar
  6. Birdlife International (2004a) Birds in the European Union: a status assessment. BirdLife International, WageningenGoogle Scholar
  7. Birdlife International (2004b) Birds in Europe: population estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  8. Birdlife International (2014) Species factsheet: Sylvia undata. Downloaded from on 07/10/2014
  9. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  10. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, CaliforniaGoogle Scholar
  11. Brotons L, Pons P, Herrando S (2005) Colonization of dynamic Mediterranean landscapes: where do birds come from after fire? J Biogeogr 32:789–798. doi: 10.1111/j.1365-2699.2004.01195.x CrossRefGoogle Scholar
  12. Brotons L, Aquilué N, de Cáceres M et al (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 8:e62392. doi: 10.1371/journal.pone.0062392 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clavero M, Villero D, Brotons L (2011) Climate change or land use dynamics: do we know what climate change indicators Indicate? PLoS ONE 6:8CrossRefGoogle Scholar
  14. Cook CN, Inayatullah S, Burgman Ma et al (2014) Strategic foresight: how planning for the unpredictable can improve environmental decision-making. Trends Ecol Evol. doi: 10.1016/j.tree.2014.07.005 PubMedGoogle Scholar
  15. Cumming SG, Stralberg D, Lefevre KL, et al. (2013) Climate and vegetation hierarchically structure patterns of songbird distribution in the Canadian boreal region. Ecography 37:137-151. doi:  10.1111/j.1600-0587.2013.00299.x
  16. De Cáceres M, Brotons L, Aquilué N, Fortin M-J (2013) The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–1547. doi: 10.1111/jbi.12111 CrossRefGoogle Scholar
  17. De Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Change 19:306–315. doi: 10.1016/j.gloenvcha.2008.09.007 CrossRefGoogle Scholar
  18. Díaz-Delgado R, Lloret F, Pons X (2004) Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc Ecol 19:731–745CrossRefGoogle Scholar
  19. Elith J, Ferrier S, Huettmann F, Leathwick J (2005) The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Modell 186:280–289. doi: 10.1016/j.ecolmodel.2004.12.007 CrossRefGoogle Scholar
  20. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 2:129–151CrossRefGoogle Scholar
  21. Estrada J, Pedrocchi V, Brotons L, Herrando S (2004) Catalan breeding bird atlas (1999–2002). Institut Catala d’Ornitologia, Lynx, BarcelonaGoogle Scholar
  22. Evans AM, Finkral AJ (2009) From renewable energy to fire risk reduction: a synthesis of biomass harvesting and utilization case studies in US forests. GCB Bioenergy 1:211–219. doi: 10.1111/j.1757-1707.2009.01013.x CrossRefGoogle Scholar
  23. Fenton N, Béscond H, Imbeau L, Boudreault C, Drapeau P, Bergeron Y (2009) Silvicultural and ecological evaluation of partial harvest in the boreal forest on the Clay Belt, Québec. In: Gauthier S, Vaillancourt MA, Leduc A, De Grandpré L, Kneeshaw D, Morin H, Drapeau P, Bergeron Y, Ecosystem management in the boreal forest. Les Presses de l’Université du Québec, Québec, pp 393–415Google Scholar
  24. Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337–374CrossRefGoogle Scholar
  25. Garcia Ra, Cabeza M, Rahbek C, Araújo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579. doi: 10.1126/science.1247579 PubMedCrossRefGoogle Scholar
  26. Gil-Tena A, Brotons L, Saura S (2009) Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob Change Biol 15:474–485. doi: 10.1111/j.1365-2486.2008.01730.x CrossRefGoogle Scholar
  27. Guisan A, Rahbek C (2011) SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444. doi: 10.1111/j.1365-2699.2011.02550.x CrossRefGoogle Scholar
  28. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  29. Hagemeijer EJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, LondonGoogle Scholar
  30. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  31. Herrando S, Brotons L (2002) Forest bird diversity in Mediterranean areas affected by wildfires: a multi-scale approach. Ecography (Cop) 25:161–172. doi: 10.1034/j.1600-0587.2002.250204.x CrossRefGoogle Scholar
  32. Herrando S, Amo R, Brotons L, Llacuna S (2001) Factors influencing post-fire dynamics of Sardinian and Dartford Warblers in Mediterranean shrublands. Ornis Fenn 78:168–174Google Scholar
  33. Herrando S, Brotons L, Estrada J et al (2011) Catalan winter bird atlas 2006–2009. Institut Català d’Ornitologia, BarcelonaGoogle Scholar
  34. Herrando S, Anton M, Sardà-Palomera F et al (2014) Indicators of the impact of land use changes using large-scale bird surveys: land abandonment in a Mediterranean region. Ecol Indic 45:235–244. doi: 10.1016/j.ecolind.2014.04.011 CrossRefGoogle Scholar
  35. Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Modell 157:331–341. doi: 10.1016/S0304-3800(02)00203-X CrossRefGoogle Scholar
  36. Houtman RM, Montgomery CA, Gagnon AR et al. (2013) Allowing a wildfire to burn: estimating the effect on future fire suppression costs. Int J Wildl Fire 22:871–882. doi:
  37. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx, BarcelonaGoogle Scholar
  38. IPCC (2007) Climate Change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  39. Keeley J, Bond W, Bradstock R, et al. (2012) Fire in mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge, UKGoogle Scholar
  40. Kelly LT, Bennett AF, Clarke MF, McCarthy Ma (2014) Optimal fire histories for biodiversity conservation. Conserv Biol 00:1–9. doi: 10.1111/cobi.12384 Google Scholar
  41. King DI, Schlossberg S, Brooks RT, Akresh ME (2011) Effects of fuel reduction on birds in pitch pine–scrub oak barrens of the United States. For Ecol Manag 261:10–18. doi: 10.1016/j.foreco.2010.08.039 CrossRefGoogle Scholar
  42. Lindenmayer DB, Blanchard W, McBurney L et al. (2014) Complex responses of birds to landscape-level fire extent, fire severity and environmental drivers. Divers Distrib. doi:  10.1111/ddi.12172
  43. Lloret F, Calvo E, Pons X, Díaz-delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17:745–759CrossRefGoogle Scholar
  44. Lomba A, Pellissier L, Randin C et al (2010) Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biol Conserv 143:2647–2657. doi: 10.1016/j.biocon.2010.07.007 CrossRefGoogle Scholar
  45. Loyn RH (1997) Effects of an extensive wildfire on birds in far eastern Victoria. Pac Conserv Biol 3:221–234Google Scholar
  46. Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69. doi: 10.1111/j.1472-4642.2008.00491.x CrossRefGoogle Scholar
  47. Martí R, Del Moral JC (eds) (2003) Atlas de las Aves Reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, MadridGoogle Scholar
  48. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, LondonCrossRefGoogle Scholar
  49. Moreira F, Delgado A, Ferreira S et al (2003) Effects of prescribed fire on vegetation structure and breeding birds in young Pinus pinaster stands of northern Portugal. For Ecol Manag 184:225–237. doi: 10.1016/S0378-1127(03)00214-7 CrossRefGoogle Scholar
  50. Moreira F, Viedma O, Arianoutsou M et al (2011) Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–2402. doi: 10.1016/j.jenvman.2011.06.028 CrossRefGoogle Scholar
  51. Nimmo DG, Kelly LT, Spence-Bailey LM et al (2012) Predicting the century-long post-fire responses of reptiles. Glob Ecol Biogeogr 21:1062–1073. doi: 10.1111/j.1466-8238.2011.00747.x CrossRefGoogle Scholar
  52. Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography (Cop) 3:285–298CrossRefGoogle Scholar
  53. Pons P, Clavero M (2010) Bird responses to fire severity and time since fire in managed mountain rangelands. Anim Conserv 13:294–305. doi: 10.1111/j.1469-1795.2009.00337.x CrossRefGoogle Scholar
  54. Pons P, Prodon R (1996) Short term temporal patterns in a Mediterranean shrubland bird community after wildfire. Acta Oecol 17:29–41Google Scholar
  55. Pons P, Clavero M, Bas JM, Prodon R (2012) Time-window of occurrence and vegetation cover preferences of Dartford and Sardinian Warblers after fire. J Ornithol 153:921–930. doi: 10.1007/s10336-012-0822-6 CrossRefGoogle Scholar
  56. PECBMS (2013) Population trends of common European breeding birds. CSO, Prague. Available at
  57. Regos A, Aquilué N, Retana J et al (2014) Using unplanned fires to help suppressing future large fires in Mediterranean forests. PLoS ONE 9:e94906. doi: 10.1371/journal.pone.0094906 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Richards SA, Possingham HP, Tizard J (1999) Optimal fire management for maintaining community diversity. Ecol Appl 9:880–892CrossRefGoogle Scholar
  59. Rodrigo A, Retana J, Pico FX (2004) Direct regeneration is not the only response of Mediterranean forest to large fires. Ecology 85:716–729CrossRefGoogle Scholar
  60. Rost J, Clavero M, Brotons L, Pons P (2012) The effect of postfire salvage logging on bird communities in Mediterranean pine forests: the benefits for declining species. J Appl Ecol 49:644–651. doi: 10.1111/j.1365-2664.2012.02127.x Google Scholar
  61. Rost J, Hutto RL, Brotons L, Pons P (2013) Comparing the effect of salvage logging on birds in the Mediterranean basin and the rocky mountains: common patterns, different conservation implications. Biol Conserv 158:7–13CrossRefGoogle Scholar
  62. Santos X, Mateos E, Bros V et al (2014) Is response to fire influenced by dietary specialization and mobility? A comparative study with multiple animal assemblages. PLoS ONE 9:e88224. doi: 10.1371/journal.pone.0088224 PubMedPubMedCentralCrossRefGoogle Scholar
  63. SEO/BirdLife (2010) Estado de conservación de las aves en España. SEO/BirdLife, MadridGoogle Scholar
  64. Shirihai H, Gargallo G, Helbig AJ (2001) Sylvia warblers: identification, taxonomy and phylogeny of the genus Sylvia. Christopher Helm Publishers Ltd, LondonGoogle Scholar
  65. Stephens SL (1998) Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For Ecol Manag 105:21–35. doi: 10.1016/S0378-1127(97)00293-4 CrossRefGoogle Scholar
  66. Stralberg D, Matsuoka SM, Hamann A et al (2014) Projecting boreal bird responses to climate change: the signal exceeds the noise. Ecol Appl. doi: 10.1890/13-2289.1 Google Scholar
  67. Taylor RS, Watson SJ, Bennett AF, Clarke MF (2013) Which fire management strategies benefit biodiversity? A landscape-perspective case study using birds in mallee ecosystems of south-eastern Australia. Biol Conserv 159:248–256. doi: 10.1016/j.biocon.2012.12.005 CrossRefGoogle Scholar
  68. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x CrossRefGoogle Scholar
  69. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography (Cop) 32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x CrossRefGoogle Scholar
  70. Tucker GM, Heath MF (1994) Birds in Europe: their conservation status. BirdLife International, CambridgeGoogle Scholar
  71. Turco M, Llasat M-C, von Hardenberg J, Provenzale A (2014) Climate change impacts on wildfires in a Mediterranean environment. Clim Change 125:369–380. doi: 10.1007/s10584-014-1183-3 CrossRefGoogle Scholar
  72. Vallecillo S, Brotons L, Herrando S (2007) Assessing the response of open-habitat bird species to landscape changes in Mediterranean mosaics. Biodivers Conserv 17:103–119. doi: 10.1007/s10531-007-9233-z CrossRefGoogle Scholar
  73. Van den Berg LJL, Bullock JM, Clarke RT et al (2001) Territory selection by the Dartford warbler (Sylvia undata) in Dorset, England: the role of vegetation type, habitat fragmentation and population size. Biol Conserv 101:217–228. doi: 10.1016/S0006-3207(01)00069-6 CrossRefGoogle Scholar
  74. Watson SJ, Taylor RS, Nimmo DG et al (2012) Effects of time since fire on birds: how informative are generalized fire response curves for conservation management? Ecol Appl 22:685–696PubMedCrossRefGoogle Scholar
  75. Zozaya EL, Brotons L, Saura S (2011) Recent fire history and connectivity patterns determine bird species distribution dynamics in landscapes dominated by land abandonment. Landsc Ecol 27:171–184. doi: 10.1007/s10980-011-9695-y CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Adrián Regos
    • 1
    • 2
    Email author
  • Manuela D’Amen
    • 3
  • Sergi Herrando
    • 4
  • Antoine Guisan
    • 3
    • 5
  • Lluís Brotons
    • 1
    • 2
    • 4
    • 6
  1. 1.CEMFOR-CTFC, InForest Joint Research Unit, CSIC-CTFC-CREAFSolsonaSpain
  2. 2.CREAFCerdanyola Del VallésSpain
  3. 3.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  4. 4.European Bird Census Council-Catalan Ornithological InstituteNatural History Museum of BarcelonaBarcelonaSpain
  5. 5.Institute of Earth Science DynamicsUniversity of LausanneLausanneSwitzerland
  6. 6.CSICCerdanyola Del VallésSpain

Personalised recommendations