Skip to main content
Log in

Time use and foraging behaviour in pre-breeding dabbling ducks Anas spp. in sub-arctic Norway

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We studied time budgets and foraging methods in pre-breeding Mallard Anas platyrhynchos, (Eurasian) Teal Anas crecca, Wigeon Anas penelope, Pintail Anas acuta, Shoveler Anas clypeata and Gadwall Anas strepera in subarctic Norway in May. Among all six species studied, foraging accounted for the most common use of time, ranging from 19 % in male Pintail to 40–60 % in female Mallard, Teal, Pintail and Gadwall. Comfort behaviours amounted to 20–34 % of the time budget, and interaction and disturbance were marginal. Vigilance time ranged from 8 % in female Mallard to 20 % in male Pintail. Movement amounted to some 20 % of the time in most species and sexes. In Wigeon, sexes did not differ in time use, whereas in Mallard, Pintail and, in particular, Teal, females foraged more and engaged less in vigilance and interactions than did males. In addition, Teal and Mallard males engaged in the riskier foraging methods less than females, but more in those permitting vigilance. Although overlap in feeding methods was large among these species, Mallard and Teal were generalists, feeding at all depths, Wigeon foraged mainly in shallow water and Pintail foraged essentially in deep water. Our results support the income/capital breeder hypothesis with respect to males only; compared to lighter species, heavier species allocated less time to foraging but more to vigilance. We found no support for the hypothesis that long-distance migrants forage more to compensate for energy loss due to migratory flight. Foraging time in females was related to breeding phenology; early nesters spent more time feeding than later nesters.

Zusammenfassung

Aktivitätsbudgets und Verhaltensweisen der Nahrungssuche bei Gründelenten der Gattung Anas vor der Brutzeit im subarktischen Norwegen

Wir untersuchten Zeitbudgets und Methoden des Nahrungserwerbs bei Stockente Anas platyrhynchos, Krickente Anas crecca, Pfeifente Anas penelope, Spießente Anas acuta, Löffelente Anas clypeata und Schnatterente Anas strepera im Mai vor Beginn der Brutzeit im subarktischen Norwegen. Die meiste Zeit wurde für die Nahrungssuche verwendet; anteilig zwischen 19 % bei männlichen Spießenten bis hin zu 40–60 % bei den Weibchen von Stock-, Krick-, Spieß- und Schnatterente. Der Anteil des Komfortverhaltens betrug 20–34 %, Interaktionen und Störungen traten nur in geringem Maße auf. Wachsamkeitsverhalten nahm zwischen 8 % der Zeit bei Stockentenweibchen und 20 % der Zeit bei Spießerpeln ein. Fortbewegung beanspruchte etwa 20 % der Zeit bei beiden Geschlechtern der meisten Arten. Bei Pfeifenten gab es keine Geschlechtsunterschiede in den Aktivitätsbudgets, wohingegen die Weibchen von Stockente, Spießente und insbesondere Krickente mehr nach Nahrung suchten und weniger an Wachsamkeit und Interaktionen teilhatten als die Männchen. Außerdem nutzen Krick- und Stockentenmännchen bei der Futtersuche im Vergleich zu den Weibchen seltener riskantere Methoden und dafür eher solche, die eine gleichzeitige Wachsamkeit erlaubten. Obgleich die Methoden des Nahrungserwerbs sich zwischen den Arten stark überschnitten, traten Stock- und Krickenten als Generalisten auf, die alle Wassertiefen nutzten, Pfeifenten fanden hauptsächlich in seichtem Wasser ihr Futter, und Spießenten suchten primär in tiefem Wasser nach Nahrung. Unsere Ergebnisse betätigten die „Income-Capital-Breeder“-Hypothese nur in Bezug auf die Männchen; schwerere Arten verbrachten im Vergleich zu leichteren weniger Zeit mit dem Nahrungserwerb als mit Wachsamkeit. Wir fanden dagegen keine Bestätigung der Hypothese, dass Langstreckenzieher mehr nach Futter suchen, um durch den Zug bedingte Energieverluste auszugleichen. Bei den Weibchen hing die mit Nahrungserwerb verbrachte Zeitspanne mit der Brutphänologie zusammen; früh nistende Weibchen verwandten mehr Zeit auf die Futtersuche als später brütende.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altman J (1974) Observational study of behaviour: sampling methods. Behaviour 49:227–267

    Article  Google Scholar 

  • Ankney CD, MacInnes CD (1978) Nutrient reserves and reproductive performance of female lesser snow geese. Auk 95:459–471

    Google Scholar 

  • Arzel C, Elmberg J (2004) Time use, foraging behaviour and microhabitat use in a temporary guild of spring-staging dabbling ducks (Anas spp.). Ornis Fennica 81:157–168

    Google Scholar 

  • Arzel C, Elmberg J, Guillemain M (2006) Ecology of spring-migrating Anatidae: a review. J Ornithol 147:167–184

    Article  Google Scholar 

  • Arzel C, Elmberg J, Guillemain M (2007) A flyway perspective of foraging activity in Eurasian Teal Anas crecca. Can J Zool 85:81–91

    Article  Google Scholar 

  • Bakken V, Runde O, Tjørve E (2003) Norsk ringmerkingsatlas: vol 1. Lommer–Alkefugler. [Norwegian Bird Ringing Atlas: vol 1: Divers–Auks]. Stavanger Museum, Stavanger

  • Baldassarre GA, Bolen EG (2006) Waterfowl ecology and management, 2nd edn. Krieger Publishing, Malabar

    Google Scholar 

  • Bates D, Maechler M, Dai B (2008) lme4: linear mixed-effects models using S4 classes. R package. Available at: http://lme4.r-forge.r-project.org/

  • Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (1992) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Berthold P (2001) Bird migration. A general survey, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Cramp S, Simmons KEL (1977) Birds of the Western Palearctic, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Drent RH, Fox AD, Stahl J (2006) Travelling to breed. J Ornithol 147:12–134

    Article  Google Scholar 

  • Dugger BD, Petrie MJ (2000) Geographic variation in foraging rates of pre-incubating female Mallards. Can J Zool 78:2241–2243

    Article  Google Scholar 

  • Ebbinge BS, St Joseph A, Prokosch P, Spaans B (1982) The importance of spring staging areas for arctic breeding geese wintering in Western Europe. Aquila 89:249–258

    Google Scholar 

  • Esler D, Grand JB (1994) The role of nutrient reserves for clutch formation by northern Pintails in Alaska. Condor 96:422–432

    Article  Google Scholar 

  • Fouque C, Corda E, Tesson JL, Mondain-Monval JY, Barthe C, Dej F, Birkan M (2004) Breeding chronology of Anatids (Anatidae) and Coots (Fulica atra) in France. Game Wildl Sci 21(2):73–106

    Google Scholar 

  • Fransson T, Pettersson J (2001) Svensk ringmärkningsatlas, vol 1. The Swedish Museum of Natural History, Stockholm

    Google Scholar 

  • Gjershaug JO, Thingstad PG, Eldøy S, Byrkjeland S (1994) Norsk Fugleatlas [Norweigan Bird Atlas; in Norwegian]. Norsk Ornitologisk Forening, Klæbu

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84(11):2809–2815

    Article  Google Scholar 

  • Guillemain M, Fritz H, Duncan P (2002) Foraging strategies of granivorous dabbling ducks wintering in protected areas of the French Atlantic coast. Biodivers Conserv 11:1721–1732

    Article  Google Scholar 

  • Guillemain M, Arzel C, Legagneux P, Elmberg J, Fritz H, Lepley M, Pin C, Arnaud A, Massez G (2007a) Predation risk constrains the plasticity of foraging behaviour in Teals, Anas crecca: a flyway-level circumannual approach. Anim Behav 73:845–854

    Article  Google Scholar 

  • Guillemain M, Arzel C, Legagneux P, Elmberg J, Fritz H, Lepley M, Pin C, Arnaud A, Massez G (2007b) Risky foraging leads to cost-free mate guarding in male Teal Anas crecca. J Ornithol 148:251–254

    Article  Google Scholar 

  • Guillemain M, Pöysä H, Fox AD, Arzel C, Dessborn L, Ekroos J, Gunnarsson G, Holm TE, Christensen TK, Lehikoinen A, Mitchell C, Rintala J, Møller AP (2013) Effects of climate change on European ducks: what do we know and what do we need to know? Wildl Biol 19:404–419

    Article  Google Scholar 

  • Gunnarsson G, Elmberg J, Pöysä H, Nummi P, Sjöberg K, Dessborn L, Arzel C (2013) Density dependence in ducks: a review of the evidence. Eur J Wildl Res 59:305–321

    Article  Google Scholar 

  • Hagemeijer EJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. T & AD Poyser, London

    Google Scholar 

  • Hepp GR (1984) Dominance in wintering Anatinae: potential effects on clutch size and time of nesting. Wildfowl 35:132–134

    Google Scholar 

  • Hohman WL, Taylor TS, Weller MW (1988) Annual body weight change in ring-necked ducks (Aythya collaris). In: Weller MW (ed) Waterfowl in winter. University Minnesota Press, Minneapolis, pp 257–269

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  PubMed  Google Scholar 

  • Johnson WP, Rohwer F (2000) Foraging behaviour of Green-winged Teal and Mallards on tidal mudflats in Louisiana. Wetlands 20:184–188

    Article  Google Scholar 

  • Jönsson KI (1997) Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78:57–66

    Article  Google Scholar 

  • Klaassen M (2002) Relationships between migration and breeding strategies in arctic breeding birds. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 237–249

    Google Scholar 

  • Kostin I, Mooij J (1995) Influence of weather conditions and other factors on the reproductive cycle of Red-breasted Geese Branta ruficollis on the Taymyr Peninsula. Wildfowl 46:45–54

    Google Scholar 

  • Krapu GL, Reinecke KJ (1992) Foraging ecology and nutrition. In: Batt BDJ, Afton AD, Anderson MD, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 1–30

    Google Scholar 

  • Lack D (1947) Darwin’s Finches. Cambridge University Press, Cambridge

    Google Scholar 

  • MacCluskie MC, Sedinger JS (2000) Nutrient reserves and clutch-size regulation of northern shovelers in Alaska. Auk 117(4):971–979

    Article  Google Scholar 

  • Madsen J (2001) Spring migration strategies in pink-footed geese Anser brachyrhynchus and consequences for spring fattening and fecundity. Ardea 89:43–55

    Google Scholar 

  • Meijer T, Drent R (1999) Re-examination of the capital and income dichotomy in breeding birds. Ibis 141:399–414

    Article  Google Scholar 

  • Møller AP, Fiedler W, Berthold P (2010) Effects of climate change on birds. Oxford University Press, Oxford

    Google Scholar 

  • Morrison RIG, Davidson NC, Piersma T (2005) Transformations at high latitudes: why do red knots bring body stores to the breeding grounds? Condor 107:449–457

    Article  Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Press, Oxford

    Google Scholar 

  • Newton I, Campbell CRG (1975) Breeding of ducks at Loch Leven, Kinross. Wildfowl 26:83–102

    Google Scholar 

  • Nudds T, Elmberg J, Pöysä H, Sjöberg K, Nummi P (2000) Ecomorphology in breeding Holarctic dabbling ducks: the importance of lamellar density and body length varies with habitat type. Oikos 91:583–588

    Article  Google Scholar 

  • Paquette GA, Ankney CD (1998) Diurnal time budgets of American Green-Winged Teal Anas crecca breeding in British Columbia. Wildfowl 49:186–193

    Google Scholar 

  • Paulus SL (1983) Dominance relations, resource use, and pairing chronology of Gadwalls in winter. Auk 100:947–952

    Google Scholar 

  • Pearse AT, Krapu GL, Cox RR Jr, Davis BE (2011) Spring-migration ecology of Northern pintails in South-central Nebraska. Waterbirds 34(1):10–18

    Article  Google Scholar 

  • Pöysä H (1986) Foraging niche shifts in multispecies dabbling duck (Anas spp.) feeding groups: harmful and beneficial interactions between species. Ornis Scand 17:333–346

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/

  • Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and western Eurasia. Wetlands International, Wageningen, Netherlands

    Google Scholar 

  • Spaans B, van´t Hoff B, van der Veer W, Ebbinge BS (2007) The significance of female body stores for egg laying and incubation in Dark-bellied Brent Geese Branta bernicla bernicla. Ardea 95:3–15

    Article  Google Scholar 

  • Swanson GA, Meyer MI, Adomatis VA (1985) Foods consumed by breeding Mallards on wetlands of South-central North Dakota. J Wildl Manag 49:197–203

    Article  Google Scholar 

  • Szijj J (1965) Ökologische Untersuchungen an Entenvögeln (Anatidae) des Ermatinger Beckens (Bodensee). Vogelwarte 23:24–71

    Google Scholar 

  • Tombre IM, Tømmervik H, Madsen J (2005) Land use changes and goose habitats, assessed by remote sensing techniques, and corresponding goose distribution in Vesterålen, Northern Norway. Agric Ecosyst Environ 109:284–296

    Article  Google Scholar 

  • Van der Meer J, Piersma T (1994) Physiologically inspired regression models for estimating and predicting nutrient stores and their composition in birds. Physiol Zool 67:305–329

    Google Scholar 

  • Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, Baillie SR (eds) (2002) The migration atlas: movements of the birds of Britain and Ireland. T & AD Poyser, London

    Google Scholar 

  • Zimin VB, Artemyev AV, Lapshin NV (2002) Survey of spring migrations and stopovers in the Olonets fields in Karelia. In: Noskov GA, Czajkowski A, Fertikova KP (eds) Study of the status and trends of migratory bird populations in Russia, 4th edn. OMPO special publication/Worlds and Family, St Petersburg, pp 18–28

    Google Scholar 

Download references

Acknowledgments

The authors extend their sincerest thanks to Per Lundberg for his indispensable maps and for making JE curious about Andøya´s ducks. Anette Jensen of Andenes provided valuable information on the weather, wintering birds and breeding sites. Nigel Turrell at the Andøy Friluftscenter and Ole Petter Bergland at Naturpartner are acknowledged for their logistic help. For data and comments regarding the annual nest initiation order of dabbling ducks in northern Europe we are deeply grateful to Linus Andersson, Preben Clausen, Lars Edenius, Gustaf Egnell, Arni Einarsson, Gunnar Gunnarsson, Adjan de Jong, Ian Newton, Leif Nilsson, Ulf Ottosson, Jukka Rintala, Ulf Sperens, Ole Therkildsen and Marcus Wikman. We thank Tony Fox and an anonymous reviewer for comments on an earlier version of this manuscript. This work was supported by grant V-162-05 from the Swedish Environmental Protection Agency and a grant from Kone foundation (accorded to C. Arzel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Arzel.

Additional information

Communicated by F. Bairlein.

Appendices

Appendix 1

Pairwise post-hoc Tukey tests of interspecific differences in the number of observations allocated to six categories of behaviour in males of Mallard, Teal, Wigeon, and Pintail

Behaviour

Species 1

Species 2

z

p

Interaction

Teal

Pintail

0.022

1

Wigeon

Pintail

−0.059

1

Mallard

Pintail

−1.169

0.636

Wigeon

Teal

−0.088

1

Mallard

Teal

−1.512

0.418

Mallard

Wigeon

−0.907

0.794

Disturbance

Teal

Pintail

0.761

0.868

Wigeon

Pintail

0.425

0.973

Mallard

Pintail

0.961

0.766

Wigeon

Teal

−0.381

0.981

Mallard

Teal

0.364

0.983

Mallard

Wigeon

0.715

0.888

Foraging

Teal

Pintail

0.519

0.953

Wigeon

Pintail

−0.869

0.816

Mallard

Pintail

−1.083

0.692

Wigeon

Teal

−1.659

0.337

Mallard

Teal

−2.213

0.115

Mallard

Wigeon

−0.071

1

Comfort

Teal

Pintail

1.518

0.417

Wigeon

Pintail

0.749

0.873

Mallard

Pintail

2.399

0.074

Wigeon

Teal

−0.473

0.964

Mallard

Teal

1.081

0.693

Mallard

Wigeon

1.231

0.598

Movement

Teal

Pintail

−0.270

0.993

Wigeon

Pintail

1.810

0.260

Mallard

Pintail

0.218

0.996

Wigeon

Teal

2.596

0.045

Mallard

Teal

0.709

0.890

Mallard

Wigeon

−2.127

0.138

Vigilance

Teal

Pintail

−3.927

<0.001

Wigeon

Pintail

−0.842

0.829

Mallard

Pintail

−2.068

0.158

Wigeon

Teal

2.240

0.108

Mallard

Teal

2.139

0.135

Mallard

Wigeon

−0.888

0.805

  1. Significant relationships are shown in boldface. Results are based on 1,961 observations

Appendix 2

Pairwise post-hoc Tukey tests of interspecific differences in the number of observations allocated to six categories of behaviour in females of Mallard, Teal, Wigeon, and Pintail

Behaviour

Species 1

Species 2

z

p

Interaction

Teal

Pintail

−0.550

0.944

Wigeon

Pintail

0.498

0.958

Mallard

Pintail

1.166

0.639

Wigeon

Teal

0.942

0.775

Mallard

Teal

1.908

0.217

Mallard

Wigeon

0.501

0.957

Disturbance

Teal

Pintail

0

1

Wigeon

Pintail

0

1

Mallard

Pintail

0

1

Wigeon

Teal

−0.034

1

Mallard

Teal

1.376

0.459

Mallard

Wigeon

1.361

0.469

Foraging

Teal

Pintail

−0.956

0.760

Wigeon

Pintail

−3.098

0.010

Mallard

Pintail

−0.246

0.994

Wigeon

Teal

−3.676

0.001

Mallard

Teal

0.724

0.879

Mallard

Wigeon

3.373

0.004

Comfort

Teal

Pintail

−1.005

0.735

Wigeon

Pintail

0.639

0.915

Mallard

Pintail

−1.134

0.656

Wigeon

Teal

1.834

0.246

Mallard

Teal

−0.342

0.985

Mallard

Wigeon

−1.725

0.298

Movement

Teal

Pintail

1.835

0.247

Wigeon

Pintail

3.039

0.012

Mallard

Pintail

0.270

0.993

Wigeon

Teal

2.370

0.079

Mallard

Teal

−1.443

0.460

Mallard

Wigeon

−2.979

0.015

Vigilance

Teal

Pintail

0.078

1

Wigeon

Pintail

1.327

0.536

Mallard

Pintail

−0.020

1

Wigeon

Teal

1.835

0.249

Mallard

Teal

−0.092

1

Mallard

Wigeon

−1.284

0.563

  1. Significant relationships are shown in boldface. Results are based on 1,011 observations

Appendix 3

Post-hoc Tukey tests of interspecific differences in the number of observations allocated to different foraging methods (column ‘behaviour’) in Teal, Wigeon, Mallard and Pintail males

Behaviour

Species 1

Species 2

z

p

On land

Teal

Pintail

−1.168

0.601

Wigeon

Pintail

1.826

0.221

Mallard

Pintail

1.690

0.284

Wigeon

Teal

2.448

0.054

Mallard

Teal

2.222

0.095

Mallard

Wigeon

−0.474

0.957

Water surface

Teal

Pintail

2.328

0.084

Wigeon

Pintail

4.548

<0.001

Mallard

Pintail

1.441

0.453

Wigeon

Teal

4.166

<0.001

Mallard

Teal

−1.098

0.673

Mallard

Wigeon

−4.630

<0.001

Head under water

Teal

Pintail

2.323

0.083

Wigeon

Pintail

1.551

0.382

Mallard

Pintail

2.382

0.072

Wigeon

Teal

−0.926

0.775

Mallard

Teal

0.479

0.960

Mallard

Wigeon

1.228

0.585

Neck under water

Teal

Pintail

−2.415

0.069

Wigeon

Pintail

−6.833

<0.001

Mallard

Pintail

−3.623

0.002

Wigeon

Teal

−6.385

<0.001

Mallard

Teal

−2.306

0.091

Mallard

Wigeon

4.763

<0.001

Up-ending

Teal

Pintail

−0.311

0.987

Wigeon

Pintail

0.000

1.000

Mallard

Pintail

−0.431

0.967

Wigeon

Teal

0.000

1.000

Mallard

Teal

−0.243

0.994

Mallard

Wigeon

0.000

1.000

  1. Behavioural categories are defined in the "Analyses" section. Significant relationships are shown in boldface. Results are based on 671 observations

Appendix 4

Post-hoc Tukey tests of interspecific differences in the number of observations allocated to different foraging methods (column ‘behaviour’) in Teal, Wigeon, Mallard and Pintail females

Behaviour

Species 1

Species 2

z

p

On land

Teal

Pintail

−2.299

0.073

Wigeon

Pintail

2.910

0.013

Mallard

Pintail

N/A

 

Wigeon

Teal

3.924

<0.001

Mallard

Teal

N/A

 

Mallard

Wigeon

N/A

 

Water surface

Teal

Pintail

0.513

0.953

Wigeon

Pintail

2.135

0.132

Mallard

Pintail

0.215

0.996

Wigeon

Teal

3.145

0.008

Mallard

Teal

−0.197

0.997

Mallard

Wigeon

−1.750

0.280

Head under water

Teal

Pintail

1.090

0.680

Wigeon

Pintail

−1.201

0.609

Mallard

Pintail

1.208

0.604

Wigeon

Teal

−2.386

0.074

Mallard

Teal

−0.179

0.998

Mallard

Wigeon

2.085

0.147

Neck under water

Teal

Pintail

−0.132

0.999

Wigeon

Pintail

−4.018

<0.001

Mallard

Pintail

−0.266

0.993

Wigeon

Teal

−4.926

<0.001

Mallard

Teal

−0.154

0.999

Mallard

Wigeon

3.541

0.002

Up-ending

Teal

Pintail

0.065

1

Wigeon

Pintail

0.003

1

Mallard

Pintail

1.280

0.663

Wigeon

Teal

−0.066

1

Mallard

Teal

1.046

0.703

Mallard

Wigeon

1.103

0.668

  1. Behavioural categories are defined in the "Analyses" section. Significant relationships are shown in boldface. Results are based on 471 observations
  2. N/A, Test not applicable due to small sample size

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzel, C., Elmberg, J. Time use and foraging behaviour in pre-breeding dabbling ducks Anas spp. in sub-arctic Norway. J Ornithol 156, 499–513 (2015). https://doi.org/10.1007/s10336-014-1151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1151-8

Keywords

Navigation