Skip to main content
Log in

Regulation of stopover duration in the European Robin Erithacus rubecula

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Analysis of factors that influence stopover departure decisions in migrating birds is an important step in understanding their movements. We studied body condition, refuelling efficiency and weather during arrival and subsequent departure of migrant European Robins Erithacus rubecula at a stopover site on the Courish Spit (Eastern Baltic) to explain why some birds continued migration on the night following arrival (‘transients’) while others stopped over for a more prolonged period (‘non-transients’). Analysis of 125 uniquely recaptured birds showed that long stopovers could not explained by adverse weather during the night following arrival. Comparison of arrival fuel loads in ‘transient’ and ‘non-transient’ individuals revealed no clear differences and most birds were able to gain mass. Only the combined consideration of both energetic and weather parameters showed that departure decisions depended on simultaneous action of nearly all factors. In ‘non-transient’ birds, the exact stopover duration is governed by a combination of achieved fuel deposition rate/fuel stores and the prevailing weather pattern. In spring, European Robins selected optimal wind condition to start a new flight bout while in autumn they departed under moderately unfavorable winds.

Zusammenfassung

Steuerung der Rastaufenthaltsdauer beim Rotkehlchen Erithacus rubecula

Die Analyse der Faktoren, welche bei rastenden Zugvögeln die Entscheidung zwischen Verweilen oder Weiterflug beeinflussen, ist ein wichtiger Schritt zum Verständnis ihrer Zugbewegungen. Wir untersuchten Körperkondition, Effizienz beim Wiederauffüllen der Energiereserven und die Wetterbedingungen bei der Ankunft und dem anschließenden Weiterflug von ziehenden Rotkehlchen in einem Rastgebiet auf der Kurischen Nehrung (Ostbaltikum), um eine Erklärung dafür zu finden, warum manche Vögel ihren Zug in der auf die Ankunft folgenden Nacht fortsetzten („Durchzügler“), während andere über einen längeren Zeitraum hinweg dort verweilten („Rastvögel“). Die Analyse von 125 einmalig wiedergefangenen Vögeln zeigte, dass sich eine lange Verweildauer nicht durch ungünstige Wetterverhältnisse in der auf die Ankunft folgenden Nacht erklären ließ. Der Vergleich der Energiereserven von durchziehenden und verweilenden Individuen bei Ankunft ließ keine klaren Unterschiede erkennen und die meisten Vögel konnten an Masse zunehmen. Erst die gemeinsame Betrachtung von Energie- und Wetterparametern zeigte, dass die Entscheidung zum Weiterflug von der gleichzeitigen Einwirkung fast aller Faktoren abhing. Bei den nicht nur durchziehenden Vögeln wird die genaue Verweildauer von einer Kombination aus der erreichten „Auftankrate“ beziehungsweise den Energiereserven sowie den vorherrschenden Wetterbedingungen bestimmt. Im Frühling wählten die Rotkehlchen optimale Windverhältnisse, um zu einer neuen Flugetappe aufzubrechen, während sie im Herbst bei mäßig ungünstigen Winden abflogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åkesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144

    Article  Google Scholar 

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23

    Article  Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird Migration physiology and ecophysiology. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Arizaga J, Belda EJ, Barba E (2011) Effect of fuel load, date, rain and wind on departure decisions of a migratory passerine. J Ornithol 152:991–999

    Article  Google Scholar 

  • Bairlein F, Jenni L, Kaiser A, Karlsson L, Noordwijk A, Peach W, Pilastro A, Spina F, Walinder G (1995) European-African Songbird Migration Network: Manual of field methods. ESF, Wilhelmshaven

    Google Scholar 

  • Bayly NJ (2006) Optimality in avian migratory fuelling behaviour: a study of a trans-Saharan migrant. Anim Behav 71:173–182

    Article  Google Scholar 

  • Bayly NJ (2007) Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, is not triggered by food availability alone. Anim Behav 74:471–479

    Article  Google Scholar 

  • Biebach H (1985) Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia 41:695–697

    Article  Google Scholar 

  • Biebach H, Friedrich W, Heine G (1986) Interaction of body mass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia 69:370–379

    Article  Google Scholar 

  • Bolshakov CV, Bulyuk VN (1999) Time of nocturnal flight initiation (take-off activity) in the European robins Erithacus rubecula during spring migration: direct observation between sunset and sunrise. Avian Ecol Behav 2:51–74

    Google Scholar 

  • Bolshakov CV, Bulyuk VN, Sinelschikova A (2000) Study of nocturnal departures in small passerine migrants: retrapping of ringed birds in high mist-nets. Vogelwarte 40:250–257

    Google Scholar 

  • Bolshakov CV, Bulyuk VN, Chernetsov N (2003) Spring nocturnal migration of Reed Warblers Acrocephalus scirpaceus: departure, landing and body condition. Ibis 145:06–112

    Google Scholar 

  • Bolshakov CV, Mukhin A, Chernetsov N, Bulyuk VN, Kosarev V, Ktitorov P, Leoke D, Tsvey A (2007) Time of nocturnal departures in European robins, Erithacus rubecula, in relation to celestial cues, season, stopover duration and fat stores. Anim Behav 74:855–865

    Article  Google Scholar 

  • Bulyuk VN, Tsvey A (2006) Timing of nocturnal autumn migratory departures in juvenile European robins (Erithacus rubecula) and endogenous and external factors. J Ornithol 147:289–309

    Article  Google Scholar 

  • Chernetsov N (2005) Spatial behavior of medium and long-distance migrants at stopovers studied by radio tracking. Ann NY Acad Sci 1046:1–11

    Article  Google Scholar 

  • Chernetsov N (2012) Passerine migration: stopover and flight. Springer, Heidelberg

    Book  Google Scholar 

  • Chernetsov N, Mukhin A (2006) Spatial behavior of European robins Erithacus rubecula during migratory stopovers: a telemetry study. Wilson J Ornithol 118:364–373

    Article  Google Scholar 

  • Chernetsov N, Titov N (2000) Design of a trapping station for studying migratory stopovers by capture-mark-recapture analysis. Avian Ecol Behav 5:27–33

    Google Scholar 

  • Cochran WW, Wikelski M (2005) Individual Migratory tactics of New World Catharus thrushes. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. Johns Hopkins University Press, Baltimore, pp 274–289

    Google Scholar 

  • Cochran WW, Montgomery GG, Graber RR (1967) Migratory flights of Hylocichla thrushes in spring: a radiotelemetry study. Living Bird 6:213–225

    Google Scholar 

  • Cohen EB, Moore FR, Fisher RA (2012) Experimental evidence for the interplay of exogenous and endogenous factors on the movement ecology of a migrating songbird. PLoS ONE 7(7):e41818. doi:10.1371/journal.pone.0041818

    Article  PubMed  CAS  Google Scholar 

  • Dänhardt J, Lindström Å (2001) Optimal departure decisions of songbirds from experimental stopover site and the significance of weather. Anim Behav 62:235–243

    Article  Google Scholar 

  • Davis P (1962) Robin recaptures on Fair Isle. Br Birds 55:225–229

    Google Scholar 

  • Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migratory passerine: the Northern Wheatear Oenanthe oenanthe. Ardea 94:593–605

    Google Scholar 

  • Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in Northern wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078

    Article  Google Scholar 

  • Delmore KE, Fox JW, Irwin DE (2012) Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc Lond B 279:4582–4589

    Article  Google Scholar 

  • Dierschke V, Delingat J (2001) Stopover behaviour and departure decision on northern wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545

    Article  Google Scholar 

  • Dierschke V, Mendel B, Schmaljohann H (2005) Differential timing of spring migration in northern wheatears Oenanthe oenanthe: hurried males or weak females? Behav Ecol Sociobiol 57:470–480

    Article  Google Scholar 

  • Ehnbom S, Karlsson L, Ylven R, Åkesson S (1993) A comparison of autumn migration strategies in robins, Erithacus rubecula, at a coastal and an inland site in southern Sweden. Ring Migr 14:84–93

    Article  Google Scholar 

  • Ellegren H (1991) Stopover ecology of autumn migrating Bluethroats Luscinia s. svecica in relation to age and sex. Ornis Scand 22:340–348

    Article  Google Scholar 

  • Erni B, Liechti F, Underhill LG, Bruderer B (2002) Wind and rain govern the intensity of nocturnal bird migration in central Europe—a log-linear regression analysis. Ardea 90:155–166

    Google Scholar 

  • Fusani L, Cardinale M, Carere C, Goymann W (2009) Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett 5:302–305

    Article  PubMed  Google Scholar 

  • Goymann W, Spina F, Ferri A, Fusani L (2010) Body fat influence departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett 6:478–481

    Article  PubMed  Google Scholar 

  • Gwinner EH, Biebach H, Von Kries I (1985) Food availability affects migratory restlessness in caged Garden Warblers (Sylvia borin). Naturwiss 172:51–52

    Article  Google Scholar 

  • Gwinner EH, Schwabl H, Schwabl-Benzinger I (1988) Effects of food deprivation on migratory restlessness and diurnal activity in the Garden Warbler Sylvia borin. Oecologia 77:321–326

    Article  Google Scholar 

  • Hall-Karlsson KSS, Fransson T (2008) How far do birds fly during one migratory flight stage? Ring Migr 24:95–100

    Article  Google Scholar 

  • Hansson M, Pettersson J (1989) Competition and fat deposition in Goldcrests (Regulus regulus) at a migration stop-over site. Vogelwarte 35:21–31

    Google Scholar 

  • Hebrard J (1971) The nightly initiation of passerine migration in spring: a direct visual study. Ibis 113:8–18

    Article  Google Scholar 

  • Hedenström A (2008) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond B 363:287–299

    Article  Google Scholar 

  • Hume ID, Biebach H (1996) Digestive tract function in the long-distance migratory garden warbler, Sylvia borin. J Comp Physiol B 166:388–395

    Article  Google Scholar 

  • Jenni L, Schaub M (2003) Behavioural and physiological reaction to environmental variation in bird migration: a review. In: Berthold P, Gwinner E, Sonnenschein E (eds) Bird migration. Springer, Berlin, pp 155–171

    Google Scholar 

  • Karasov WH, Pinshow B, Starck JM, Afik D (2004) Anatomical and histological changes in the alimentary tract of migrating Blackcaps (Sylvia atricapilla): a comparison among fed, fasted, food-restricted and refed birds. Physiol Zool 77:149–160

    Article  Google Scholar 

  • Karlsson L, Persson K, Pettersson J, Walinder G (1988) Fat-weight relationship and migratory strategies in the Robin Erithacus rubecula at two stopover sites in South Sweden. Ring Migr 9:160–168

    Article  Google Scholar 

  • Karlsson H, Nilsson C, Bäckman J, Alerstam T (2011) Nocturnal passerine migration without tailwind assistance. Ibis 153:485–493

    Article  Google Scholar 

  • Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164:362–371

    Article  Google Scholar 

  • Kuenzi A, Moore FR, Simons T (1991) Stopover of Neotropical landbird migrants on East Ship Island following trans-Gulf migration. Condor 93:869–883

    Article  Google Scholar 

  • Labocha MK, Hayes JP (2012) Morphometric indices of body condition in birds: a review. J Ornithol 153:1–22

    Article  Google Scholar 

  • Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568

    Article  Google Scholar 

  • Lindström Å (2003) Fuel deposition rates in migrating birds: causes, constraints and consequences. In: Berthold P, Gwinner E, Sonnenschein E (eds) Bird migration. Springer, Berlin, pp 307–320

    Google Scholar 

  • Loria DE, Moore FR (1990) Energy demands of migration on red-eyed vireos, Vireo olivaceus. Behav Ecol 1:24–35

    Article  Google Scholar 

  • Matthews SN, Rodewald PG (2010) Urban forest patches and stopover duration of migratory Swainson’s thrushes. Condor 112:96–104

    Article  Google Scholar 

  • Mitchell GW, Newman AEM, Wikelski M, Norris DR (2012) Timing of breeding carries over to influence migratory departure in a songbird: an automated radiotracking study. J Anim Ecol 81:1024–1033

    Article  PubMed  Google Scholar 

  • Moore FR, Aborn DA (1996) Time of departure by Summer Tanagers (Piranga rubra) from a stopover site following spring trans-gulf migration. Auk 113:949–952

    Article  Google Scholar 

  • Moore FR, Kerlinger P (1987) Stopover and fat deposition by North American wood-warblers (Parulinae) following spring migration over the Gulf of Mexico. Oecologia 74:47–54

    Article  Google Scholar 

  • Morganti M, Mellone U, Bogliani G, Saino N, Ferri A, Spina F, Rubolini D (2011) Flexible tuning of departure decisions in response to weather in black redstarts Phoenicurus ochruros migrating across the Mediterranean Sea. J Avian Biol 42:323–334

    Article  Google Scholar 

  • Paxton KL, Van Riper III, Ch O’Brien C (2008) Movement patterns and stopover ecology of Wilson’s Warblers during spring migration on the lower Colorado river in southwestern Arizona. Condor 110:672–681

    Article  Google Scholar 

  • Payevsky VA (1973) Atlas of bird migration according to banding data at the Courish Spit. In: Bykhovsky BE (ed) Bird migration—ecological and physiological factors. Halstead, New York, pp 1–124

    Google Scholar 

  • Pettersson J, Hasselquist D (1985) Fat deposition and migration capacity of robins Erithacus rubecula and goldcrests Regulus regulus at Ottenby, Sweden. Ring Migr 6:66–76

    Article  Google Scholar 

  • Ramenofsky M, Agatsuma R, Barga M, Cameron R, Harm J (2003) Migratory behavior: new insights from captive studies. In: Berthold P, Gwinner E, Sonnenschein E (eds) Bird Migration. Springer, Berlin, pp 97–111

    Google Scholar 

  • Rappole JH, Warner DW (1976) Relationships between behavior, physiology, and weather in avian transients at a migration stopover site. Oecologia 26:193–212

    Article  Google Scholar 

  • Salewski V, Schaub M (2007) Stopover duration of Palaearctic passerine migrants in the Western Sahara—independent of fat stores? Ibis 149:223–236

    Article  Google Scholar 

  • Schaub M, Liechti F, Jenni L (2004) Departure of migrating European Robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237

    Article  Google Scholar 

  • Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behav Ecol 19:657–666

    Article  Google Scholar 

  • Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  • Schwilch R, Jenni L (2001) Low initial refueling rate at stopover sites: a methodological effect? Auk 118:698–708

    Article  Google Scholar 

  • Seewagen CL, Guglielmo CG (2010) Effects of fat and lean body mass on migratory landbird stopover duration. Wilson J Ornithol 122:82–87

    Article  Google Scholar 

  • Statistica (2003) Statistica version 6.1. Statsoft, Tulsa, OK

  • Titov N (1999a) Fat level and temporal pattern of diurnal movements of Robins (Erithacus rubecula) at an autumn stopover site. Avian Ecol Behav 2:89–99

    Google Scholar 

  • Titov N (1999b) Individual home ranges in Robins Erithacus rubecula at stopovers during autumn migration. Vogelwelt 120:237–242

    Google Scholar 

  • Titov N (1999c) Home ranges in two passerine nocturnal migrants at a stopover site in autumn. Avian Ecol Behav 3:69–78

    Google Scholar 

  • Titov NV, Chernetsov NS (1999) Stochastic models as a new method for estimating length of migratory stopovers in birds. Usp Sovrem Biol 119:396–403 (in Russian)

    Google Scholar 

  • Tøttrup AP, Klaassen RHG, Strandberg R, Thorup K, Kristensen MW, Jorgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc Lond B 279:1008–1016

    Article  Google Scholar 

  • Tsvey A (2008) Migratory strategy of Robins (Erithacus rubecula) in Eastern Baltic. PhD thesis, Saint-Petersburg Zoological institute (in Russian)

  • Tsvey A, Bulyuk VN, Kosarev V (2007) Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol 61:1665–1674

    Article  Google Scholar 

  • Zimin VB (2003) Body mass variability in juvenile Robins Erithacus rubecula in the Ladoga area. Avian Ecol Behav 10:1–31

    Google Scholar 

Download references

Acknowledgments

We are most grateful to Martin Griffiths and Lyndon Roberts for correcting our English and Volker Salewski and an anonymous reviewer who helped us greatly to improve the manuscript. We are indebted to many our colleagues and students who caught birds in the daytime and helped us to control the high nets at night. We thank the British Atmospheric Data Centre (BADC) for the wind balloon data. This study was supported by the Russian Foundation for Basic Research (grant 01-04-49801, 04-04-49161 and 13-04-00490). Trapping of the birds complied with the current laws of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor N. Bulyuk.

Additional information

Communicated by N. Chernetsov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulyuk, V.N., Tsvey, A. Regulation of stopover duration in the European Robin Erithacus rubecula . J Ornithol 154, 1115–1126 (2013). https://doi.org/10.1007/s10336-013-0981-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-0981-0

Keywords

Navigation