Skip to main content
Log in

Effect of fuel load, date, rain and wind on departure decisions of a migratory passerine

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Meteorological conditions, fuel load and date in the season can affect the departure decisions among migratory birds. However, it is poorly understood to what extent the departure decisions are more influenced by some parameters in relation to others, and how they interact with each other. We explored here how fuel load, date, rain and wind (measured on the ground and at high altitude, codified as a tailwind component) influenced the departure decisions of migratory Blackcaps (Sylvia atricapilla) from a stopover site. We used mark–recapture data of 947 Blackcaps collected during the autumn migration period 2005 at a stopover site in northern Iberia, estimating the emigration likelihood with Cormack-Jolly-Seber models, in which we tested for the effect of these four study variables. Best models fitting data showed an additive and positive effect of tailwind and fuel load on the emigration likelihood.

Zusammenfassung

Die meteorologischen Verhältnisse, der Energievorrat sowie das konkrete Datum können bei Zugvögeln die Entscheidung darüber beeinflussen, wann sie ihren Zug beginnen, bzw. fortsetzen. Dabei ist jedoch nur wenig dazu bekannt, in welchem Ausmaß welcher dieser Parameter relativ zu den anderen die Abflugentscheidung beeinflusst und inwieweit sie untereinander interagieren. In dieser Studie haben wir für ziehende Mönchsgrasmücken (Sylvia atricapilla) untersucht, wie ihr Energievorrat, das jeweilige Datum, Regen und Wind (gemessen am Boden und in größerer Höhe, angegeben als Rückenwindkomponente) die Entscheidung für den Weiterflug von einem Zwischenstop beeinflussten. Hierfür verwendeten wir die Daten von 947 markierten Mönchsgrasmücken, die während des Herbstzuges 2005 in einem Zwischenstop-Gebiet im Norden der iberischen Halbinsel wiedergefangen wurden. Die Weiterzug-Wahrscheinlichkeit wurde anhand von Cormack-Jolly-Seber-Modellen abgeschätzt, mit denen wir die möglichen Auswirkungen der vier untersuchten Variablen testeten. Das den Daten am besten angepasste Modell zeigte einen additiven, positiven Effekt von Rückenwind und Energievorrat auf die Weiterzugswahrscheinlichkeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Åkesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144

    Google Scholar 

  • Åkesson S, Alerstam T, Hedenström A (1996) Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol 27:95–102

    Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61:181–189

    PubMed  Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2002) Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration. J Avian Biol 33:349–357

    Google Scholar 

  • Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Alerstam T, Linström A (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwiner E (ed) Bird migration: the physiology and ecophysiology. Springer, Berlin, pp 331–351

    Google Scholar 

  • Arizaga J, Belda EJ, Barba E (2008) Fuel management and stopover duration of blackcaps Sylvia atricapilla stopping over in northern Spain during autumn migration period. Bird Study 55:124–134

    Google Scholar 

  • Barriocanal C, Montserrat D, Robson D (2002) Influences of wind flow on stopover decisions: the case of the reed warbler Acrocephalus scirpaceus in the western Mediterranean. Inter J Biometeorol 46:192–196

    CAS  Google Scholar 

  • Bayly N (2007) Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, is not triggered by food availability alone. Anim Behav 74:471–479

    Google Scholar 

  • Belda EJ, Barba E, Monrós JS (2007) Resident and transient dynamics, site fidelity and survival in wintering blackcaps: evidence from capture–recapture analyses. Ibis 149:396–404

    Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman & Hall, London

    Google Scholar 

  • Bolshakov CV, Bulyuk VN (1999) Time of nocturnal flight initiation (take-off activity) in the European robin Erithacus rubecula during spring migration: direct observation between sunset and sunrise. Avian Ecol Behav 2:51–74

    Google Scholar 

  • Bolshakov CV, Rezvyi SP (1998) Time of nocturnal flight initiation (take-off activity) in the European robin Erithacus rubecula during spring migration: visual observation between sunset and darkness. Avian Ecol Behav 1:37–49

    Google Scholar 

  • Bolshakov CV, Chernetsov N, Mukhin A, Bulyuk VN, Kosarev V, Ktitorov P, Leoke D, Tsvey A (2007) Time of nocturnal departures in European robins, Erithacus rubecula, in relation to celestial cues, season, stopover duration and fat scores. Anim Behav 74:855–865

    Google Scholar 

  • Bulyuk VN, Tsvey A (2006) Timing of nocturnal autumn migratory departures in juvenile European robins (Erithacus rubecula) and endogenous and external factors. J Ornithol 147:298–309

    Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference. A practical information theoretic approach. Springer, New York

    Google Scholar 

  • Chan K (1995) Take-off behaviour and effects of weather on the migration of the silvereye (Zosterops lateralis). Ring 17:77–90

    Google Scholar 

  • Choquet R, Reboulet AM, Pradel R, Lebreton JD (2001) U-care (utilities: capture–recapture) user’s guide. CEFE/CNRS, Montpellier

    Google Scholar 

  • Cochran WW (1987) Orientation and other migratory behaviours of a Swainson’s thrush followed for 1,500 km. Anim Behav 35:927–929

    Google Scholar 

  • Cochran WW, Wikelski M (2005) Individual migratory tactics of New World Catharus thushes: current knowledge and future tracking options from space. In: Greenberg R, Marra P (eds) Birds of two worlds: ecology and evolution of migrants. Johns Hopkins University Press, Baltimore, pp 274–289

    Google Scholar 

  • Cramp S (1992) The birds of the western Palearctic, vol VI. Oxford University Press, Oxford

    Google Scholar 

  • Dänhardt J, Lindström Å (2001) Optimal departure decisions of songbirds from an experimental stopover site and the significant of weather. Anim Behav 62:235–243

    Google Scholar 

  • Dierschke V, Delingat J (2001) Stopover behaviour and departure decision of northern wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545

    Google Scholar 

  • Elkins N (1999) Weather and bird behaviour. Poyser, London

    Google Scholar 

  • Erni B, Liechti F, Underhill LG, Bruderer B (2002) Wind and rain govern intensity of nocturnal bird migration in central Europe: a log-linear regression analysis. Ardea 90:155–166

    Google Scholar 

  • Franklin AB (2001) Exploring ecological relationships in survival and estimating rates of population change using program MARK. In: Field R, Warren RJ, Okarma H, Sievert PR (eds) Proceedings of second international wildlife manage congress. The Wildlife Society, Bethesda, pp 290–296

    Google Scholar 

  • Fransson T (1998) Patterns of migratory fuelling in whitethroats Sylvia communis in relation to departure. J Avian Biol 29:569–573

    Google Scholar 

  • Gauthreaux SA (1971) A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 88:343–365

    Google Scholar 

  • Greño JL, Belda EJ, Barba E (2008) Influence of temperatures during the nestling period on post-fledging survival of great tit Parus major in Mediterranean habitat. J Avian Biol 39:41–49

    Google Scholar 

  • Hebrard JL (1971) The nightly initiation of passerine migration in spring: a direct visual study. Ibis 113:8–18

    Google Scholar 

  • Jenni L, Schaub M (2003) Behavioural and physiological reactions to environmental variation in bird migration: a review. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 155–171

    Google Scholar 

  • Kaiser A (1993) A new multicategory classification of subcutaneous fat deposits of songbirds. J Field Ornithol 64:246–255

    Google Scholar 

  • Lack D (1960) The influence of weather on passerine migration. A review. Auk 77:171–209

    Google Scholar 

  • Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211

    Google Scholar 

  • Moore FR (1987) Sunset and the orientation behaviour of migrating birds. Biol Rev 62:65–86

    Google Scholar 

  • Moore FR, Aborn D (1996) Time of departure by summer tanagers (Piranga rubra) from a stopover site following spring trans-Gulf migration. Auk 113:949–952

    Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic, London

    Google Scholar 

  • Pradel R, Hines JE, Lebreton JD, Nichols JD (1997) Capture-recapture survival models taking account of transients. Biometrics 53:60–72

    Google Scholar 

  • Richardson WJ (1990) Timing and amount of bird migration in relation to weather: a review. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 78–101

    Google Scholar 

  • Schaub M, Pradel R, Jenni L, Lebreton JD (2001) Migrating birds stop over longer than usually thought: an improved capture-recapture analysis. Ecology 82:852–859

    Google Scholar 

  • Schaub M, Liechti F, Jenni L (2004) Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237

    Google Scholar 

  • Schwartz CC, Haroldson MA, White GC, Harris RB, Cherry S, Keaty KA, Moody D, Servheen C (2005) Temporal, spatial and environmental influences on the demographics of grizzly bears in the Greater Yellowstone ecosystem. Wildlife Monograph 161

  • Senar JC, Pascual J (1997) Keel and tarsus length may provide a good predictor of avian body size. Ardea 85:269–274

    Google Scholar 

  • Shirihai H, Gargallo G, Helbig AJ (2001) Sylvia warblers: identification, taxonomy and phylogeny of the genus Sylvia. Christopher Helm, London

    Google Scholar 

  • Svensson L (1998) Guía para la identificación de los paseriformes de Europa. SEO/BirdLife, Madrid

    Google Scholar 

  • Taylor JJ, Alisauskas RT, Kehoe FP (2004) Multistate modelling of brood amalgamation in white-winged scoters Melanitta fusca deglandi. Anim Biodiver Conserv 27:369–370

    Google Scholar 

  • Tsvey A, Bulyuk VN, Korasev V (2007) Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol 61:1665–1674

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(suppl):120–138

    Google Scholar 

Download references

Acknowledgments

Meteorological data were provided by Gobierno de Navarra and NOAA (US Department of Commerce). The Gobierno de Navarra also authorised the ringing activity. J.A. was supported by a post-graduate fellowship from the Basque Government. D. Alonso and I. Fernández collaborated during the field work. E.B. and E.J.B. were partially supported by project CGL2007-61395 (Spanish Ministry of Education and Science). H. Schmaljohann and one anonymous reviewer provided very valuable comments that improved an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Arizaga.

Additional information

Communicated by A. Hedenström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arizaga, J., Belda, E.J. & Barba, E. Effect of fuel load, date, rain and wind on departure decisions of a migratory passerine. J Ornithol 152, 991–999 (2011). https://doi.org/10.1007/s10336-011-0685-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0685-2

Keywords

Navigation