Skip to main content

Advertisement

Log in

Polymorphic microsatellite loci identified through development and cross-species amplification within shorebirds

  • Technical Notes
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We developed microsatellite loci for demographic assessments of shorebirds, a group with limited markers. First, we isolated five dinucleotide repeat microsatellite loci from the Black Oystercatcher (Haematopodidae: Haematopus bachmani), and three from the Bristle-thighed Curlew (Scolopacidae: Numenius tahitiensis); both species are of conservation concern. All eight loci were polymorphic in their respective target species. Hbaμ loci were characterized by two to three alleles with observed heterozygosity ranging from 0.07 to 0.33, and two to nine alleles were detected for Nut loci with observed heterozygosity ranging from 0.08 to 0.72. No linkage disequilibrium or departures from Hardy–Weinberg equilibrium were observed. The eight loci were also tested for cross-species amplification in 12 other species within Charadriidae and Scolopacidae, and the results demonstrated transferability across several genera. We further tested all 14 species at 12 additional microsatellite markers developed for other shorebirds: Dunlin (Calidris alpina; four loci) and Ruff (Philomachus pugnax; eight loci). Two markers (Hbaμ4 and Ruff6) were polymorphic in 13 species, while two (Calp6 and Ruff9) were monomorphic. The remaining eight markers revealed polymorphism in one to nine species each. Our results provide further evidence that locus Ruff10 is sex-linked, contrary to the initial description. These markers can be used to enhance our understanding of shorebird biology by, for example, helping to determine migratory connectivity among breeding and wintering populations and detecting relatedness among individuals.

Zusammenfassung

Für die demographische Bearbeitung von Watvögeln (Regenpfeiferartige) wurden in dieser Studie Genloci für Microsatellitsequenzen entwickelt. Genetische Marker sind für diese Vogelgruppe bislang rar. Zu Beginn wurden fünf Dinukleotide von repetitiven Mikrosatelliten-Loci des Klippenausternfischers (Haematopodidae: Haematopus bachmani) und drei des Borstenbrachvogels (Scolopacidae: Numenius tahitiensis) isoliert. Beide Vogelarten stehen unter einem erhöhten Artenschutzstatus in den USA. Die acht isolierten Loci wiesen Polymorphismen in der jeweils entsprechenden Art auf. Die Hbaμ-Loci verfügten über zwei bis drei Allele mit einer bewerteten Heterozygosität (H o ) zwischen 0,07 und 0,33. Für die Nut-Loci wurden zwei bis neun Allele gefunden (H o 0,08-0,72). Ein Kopplungsungleichgewicht oder Abweichen vom Hardy-Weinberg-Gleichgewicht wurde in der Analyse nicht festgestellt. Die acht Mikrosatelliten-Loci wurden durch DNA-Amplifikation in 12 weitern Arten innerhalb der Charadriidae- und Scolopacidae-Familie auf interspezifische Kompatibilität überprüft und können in mehreren Gattungen angewendet werden. In der Studie wurden zusätzliche 12 Mikrosatellitenmarker, die für andere Regenpfeiferartige entwickelt wurden (Alpenstrandläufer Calidris alpina mit vier Loci; Kampfläufer Philomachus pugnax mit acht Loci), in allen 14 betroffenen Arten untersucht. Zwei Marker (Hbaµ4 and Ruff6) wiesen in 13 Arten Polymorphismen auf. Die zwei Marker Calp6 und Ruff9 erwiesen sich als monomorphisch. Die restlichen acht Marker offenbarten Polymorphismen zwischen einer und neun verschiedenen Vogelarten. Das Ergebnis dieser Studie ergab weitere Hinweise auf die geschlechtsgebundene Vererbung von Ruff10, was im Widerspruch zur ursprünglichen Beschreibung des Locus steht. Die untersuchten Marker haben das Potenzial einen besseren Einblick in die Biologie von Regenpfeiferartigen zu gewähren. So können z.B. mit dieser Methode die Konnektivität zwischen Brut- und Überwinterungshabitaten sowie Verwandtschaftsgrade zwischen Individuen ermittelt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaska Shorebird Group (2008) Alaska shorebird conservation plan. Version II. Alaska Shorebird Group, Anchorage, AK, p 84. Available from http://alaska.fws.gov/mbsp/mbm/shorebirds/plans.htm

  • Booms TL, Talbot SL, Sage GK, McCaffery BJ, McCracken KG, Schempf PF (2011) Nest-site fidelity and dispersal of gyrfalcons estimated by noninvasive genetic sampling. Condor 113:768–778. doi:10.1525/cond.2011.100178

    Google Scholar 

  • Brown S, Hickey C, Harrington BH, Gill Jr RE (2001) United States shorebird conservation plan, 2nd edn. Manomet Center for Conservation Sciences, Manomet. Available from http://www.fws.gov/shorebirdplan/USShorebird/PlanDocuments.htm

  • Casey AE, Sandercock BK, Wisely SM (2011) Genetic parentage and local population structure in the socially monogamous upland sandpiper. Condor 113:119–128. doi:10.1525/cond.2011.100100

    Article  Google Scholar 

  • Donaldson G, Hyslop C, Morrison G, Dickson L, Davidson I (2000) Canadian shorebird conservation plan. Canadian Wildlife Service, Environment Canada, Ottawa, ON, p 27. Available from http://fresc.usgs.gov/products/blackoystercatcher/conservation_plans/Canadian_Shorebird_Conserv_Plan.pdf

  • Ellegren H (1992) Polymerase chain reaction (PCR) of microsatellites-a new approach to studies of genetic relationships in birds. Auk 109:886–895

    Google Scholar 

  • Guzzetti BM (2008) Structure and dynamics of black oystercatchers on an isolated Island. Thesis, University of Fairbanks, Alaska

  • Handel CM, Pajot L, Talbot SL, Sage GK (2006) Use of buccal swabs for sampling DNA from nestling and adult birds. Wildl Soc Bull 34:1094–1100

    Article  Google Scholar 

  • IUCN (2011) IUCN Red List of threatened species. Version 2011.2. http://www.iucnredlist.org. Downloaded on 30 November 2011

  • Knowlton AL, Pierson BJ, Talbot SL, Highsmith RC (2003) Isolation and characterization of microsatellite loci in the intertidal sponge (Halichondria panacea). Mol Ecol Notes 3:560–562. doi:10.1046/j.1471-8286.2003.00511.x

    Article  CAS  Google Scholar 

  • Küpper C, Burke T, Székely T, Dawson DA (2008) Enhanced cross-species utility of conserved microsatellite markers in shorebirds. BMC Genomics 9:502. doi:10.1186/1471-2164-9-502

    Article  PubMed  Google Scholar 

  • Marthinsen G, Wennerberg L, Lifjeld JT (2007) Phylogeography and subspecies taxonomy of dunlins (Calidris alpina) in western Palearctic analysed by DNA microsatellites and amplified fragment length polymorphism markers. Biol J Linn Soc 92:713–726. doi:10.1111/j.1095-8312.2007.00931.x

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Primmer CR, Painter JN, Koskinen MT, Palo JU, Merilä J (2005) Factors affecting avian cross-species microsatellite amplification. J Avian Biol 36:348–360. doi:10.1111/j.0908-8857.2005.03465.x

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP version 3.3: population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rönkä A, Kvist L, Karvonen J, Koivula K, Pakanen V-M, Schamel D, Tracy DM (2008) Population genetic structure in the Temminck’s stint (Calidris temminckii), with an emphasis on Fennoscandian populations. Conserv Genet 9:29–37. doi:10.1007/s10592-007-9299-x

    Article  Google Scholar 

  • Sonsthagen SA, Talbot SL, White CM (2004) Gene flow and genetic characterization of northern goshawks breeding in Utah. Condor 106:826–836

    Article  Google Scholar 

  • Thuman KA, Widemo F, Piertney SB (2002) Characterization of polymorphic microsatellite DNA markers in the ruff (Philomachus pugnax). Mol Ecol Notes 2:276–277. doi:10.1046/j.1471-8286.2002.00221.x-i2

    CAS  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  • Wennerberg L, Bensch T (2001) Geographic variation in the dunlin (Calidris alpina) as revealed by morphology, mtDNA and microsatellites. In: Genetic variation and migration in waders. Doctoral thesis, Lund University

Download references

Acknowledgments

This assessment was funded by the US Geological Survey, Alaska Science Center. Blood or extracted DNA samples were provided by the following individuals: Julie Morse, Jim Johnson, Dan Ruthrauff, Diane Tracy, Pavel Tomkovich, Ty Donnelly, Sarah McCloskey, Jesse Conklin, Maks Dementyev, Oscar Johnson, Roger Goodwill, Andrea Bruner, Patricia Johnson, Roger Gold, Ruth Utzurrum, and Joshua Seamon. We thank K. Amstrup for laboratory assistance and an anonymous reviewer for comments on an earlier draft. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Talbot.

Additional information

Communicated by M. Wink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, I., Guzzetti, B.M., Gust, J.R. et al. Polymorphic microsatellite loci identified through development and cross-species amplification within shorebirds. J Ornithol 153, 593–601 (2012). https://doi.org/10.1007/s10336-011-0811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0811-1

Keywords

Navigation