Journal of Ornithology

, Volume 152, Issue 3, pp 681–693 | Cite as

Endangered subspecies of the Reed Bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures

  • Laura Kvist
  • Suvi Ponnikas
  • Eduardo J. Belda
  • Ignacio Encabo
  • Emilio Martínez
  • Alejandro Onrubia
  • José M. Hernández
  • Pablo Vera
  • Júlio M. Neto
  • Juan S. Monrós
Original Article

Abstract

In the Iberian Peninsula, populations of two subspecies of the Reed Bunting Emberiza schoeniclus have become increasingly fragmented during the last decades when suitable habitats have been lost and/or the populations have gone extinct. Presently, both subspecies are endangered. We estimated the amount of genetic variation and population structure in order to define conservation units and management practices for these populations. We found that the subspecies lusitanica has clearly reduced genetic variation in nuclear and mitochondrial markers, has a drastically small effective population size and no genetic differentiation between populations. In contrast, the subspecies witherbyi is significantly structured, but the populations still hold large amounts of variation even though the effective population sizes are smaller than in the non-endangered subspecies schoeniclus. We suggest several management units for the Iberian populations. One unit includes subspecies lusitanica as a whole; the other three units are based on genetically differentiated populations of witherbyi. The most important genetic conservation measure in the case of lusitanica is to preserve the remaining habitats in order to at least maintain the present levels of gene flow. In the case of the three management units within witherbyi, the most urgent conservation measure is to improve the habitat quality to increase the population sizes.

Keywords

Genetic diversity Effective population size Microsatellite mtDNA Population structure 

Zusammenfassung

Auf der Iberischen Halbinsel wurden die Populationen von zwei Rohrammer-Unterarten Emberiza schoeniclus in den letzten Jahrzehnten, als geeignete Habitate verloren gingen und/oder Populationen ausstarben, zunehmend fragmentiert. Derzeitig sind beide Unterarten gefährdet. Wir schätzten die Höhe der genetischen Variation und die Populationsstruktur um daraus Einheiten für den Schutz und Managementpraktiken für diese Populationen zu bestimmen. Wir fanden heraus, dass die Unterart lusitanica eine deutlich reduzierte genetische Variation in nukleären wie mitochondrialen Markern, eine dramatisch geringe effektive Populationsgröße und keine genetische Differenzierung zwischen Populationen aufweist. Im Gegensatz dazu ist die Unterart witherbyi deutlich strukturiert, aber die einzelnen Populationen beinhalten immer noch große Anteile der Gesamtvariation, wenngleich die effektiven Populationsgrößen kleiner sind als die der nicht gefährdeten Unterart schoeniclus. Wir schlagen mehrere Management-Einheiten für die Iberischen Populationen vor. Eine Einheit beinhaltet die Unterart lusitanica als Ganzes; die anderen drei Einheiten basieren auf den genetisch differenzierten Populationen der Unterart witherbyi. Die allerwichtigste Schutzmaßnahme aus genetischer Sicht im Falle der Unterart lusitanica ist die Bewahrung der verbleibenden Habitate um zumindest das derzeitige Maß an Genfluss zu erhalten. Im Falle der drei Management-Einheiten der Unterart witherbyi ist die dringlichste Schutzmaßnahme die Verbesserung der Habitate um die Populationsgrößen zu erhöhen.

References

  1. Atienza JC, Copete JL (2004) Escribano palustre iberoriental/escribano palustre iberoccidental. In: Madroño A (ed) Libro rojo de las aves de España Ministerio de Medio Ambiente, Madrid, pp 378–379Google Scholar
  2. Belda EJ, Encabo JL, Hernández JM et al (2008) Requerimientos y uso del hábitat del escribano palustre iberoriental Emberiza schoeniclus witherbyi. In: Barba E, Monrós JS, Belda EJ, Andreu J (eds) XII Congreso Nacional y IX Iberoamericano de Etología Ponencias y comunicaciones. Publicaciones de la Universidad de Valencia, Valencia, p 67Google Scholar
  3. Bensch S, Price T, Kohn J (1997) Isolation and characterization of microsatellite loci in a Phylloscopus warbler. Mol Ecol 6:91–92PubMedCrossRefGoogle Scholar
  4. Byers C, Olsson U, Curson J (1994) Buntings and Sparrows—a guide to the Buntings and North American Sparrows. Pica Press, SussexGoogle Scholar
  5. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244CrossRefGoogle Scholar
  6. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  7. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  8. Cramp S, Perrins CM (1994) The birds of the western palearctic, vol 9. Oxford University Press, OxfordGoogle Scholar
  9. Crandall KA, Bininda-Edmonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  10. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  11. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedGoogle Scholar
  12. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  13. Graputto A, Pilastro A, Marin G (1998) Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus. Mol Ecol 7:1173–1182CrossRefGoogle Scholar
  14. Griffith SC, Stewart IRK, Dawson DA et al (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an’island effect’. Biol J Linn Soc 68:303–316Google Scholar
  15. Hanotte O, Zanon C, Pugh A et al (1994) Isolation and characterization of microsatellite loci in a passerine birds: the reed bunting Emberiza schoeniclus. Mol Ecol 3:529–530PubMedCrossRefGoogle Scholar
  16. Hey J, Waples RS, Arnold ML et al (2003) Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol 18:597–603CrossRefGoogle Scholar
  17. Keane TM, Naughton TJ, McInerney JO (2007) MultiPhyl: A high throughput phylogenomics webserver using distributed computing. Nucl Acids Res 35:W33–W37PubMedCrossRefGoogle Scholar
  18. Kuhner MK (2006) Lamarc 20: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770PubMedCrossRefGoogle Scholar
  19. Kvist L, Martens J, Higuchi H et al (2003) Evolution and genetic structure of the great tit (Parus major) complex. Proc R Soc Lond B 270:1447–1454CrossRefGoogle Scholar
  20. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460PubMedCrossRefGoogle Scholar
  21. Matessi G (1999) Evolutionary patterns in European populations of reed bunting (Emberiza schoeniclus ssp). Dissertation, University of BolognaGoogle Scholar
  22. Mayer C, Schiegg K, Pasinelli G (2008) Isolation, characterization and multiplex genotyping of 11 autosomal and four sex-linked microsatellite loci in the reed bunting, Emberiza schoeniclus (Emberizidae, Aves). Mol Ecol Notes 8:332–334Google Scholar
  23. Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  24. Ovenden J, Peel D, Street R, Courtney A, Hoyle S et al (2007) The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Mol Ecol 16:127–138PubMedCrossRefGoogle Scholar
  25. Patkeau D (1999) Using genetics to identify intraspecific conservation units: a critique of current methods. Conserv Biol 13:1507–1509CrossRefGoogle Scholar
  26. Primmer CR, Møller AP, Ellegren H (1995) Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica. Mol Ecol 4:493–498PubMedCrossRefGoogle Scholar
  27. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  28. Raymond M, Rousset F (1995) GENEPOP (version 12): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  29. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  30. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  31. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  32. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264PubMedCrossRefGoogle Scholar
  33. von Oosterhout C, Hutchinson WF, Wills PM et al (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  34. Waples RS (1991) Pacific salmon, Onchorynchus spp, and the definition of species under the endangered species act. Mar Fish Rev 53:11–22Google Scholar
  35. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Laura Kvist
    • 1
  • Suvi Ponnikas
    • 1
  • Eduardo J. Belda
    • 2
  • Ignacio Encabo
    • 3
  • Emilio Martínez
    • 4
  • Alejandro Onrubia
    • 5
  • José M. Hernández
    • 6
  • Pablo Vera
    • 3
  • Júlio M. Neto
    • 7
    • 8
  • Juan S. Monrós
    • 3
  1. 1.Department of BiologyUniversity of OuluOuluFinland
  2. 2.IGIC, Universidad Politécnica de ValenciaGandíaSpain
  3. 3.Institute “Cavanilles” of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
  4. 4.Lugar de Gondariño n 13APontevedraSpain
  5. 5.Fundación MigresAlgecirasSpain
  6. 6.Ciudad RealSpain
  7. 7.Department of Animal EcologyLundSweden
  8. 8.CIBIO/UP-Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal

Personalised recommendations