Skip to main content
Log in

Spinet-QSM: model-based deep learning with schatten p-norm regularization for improved quantitative susceptibility mapping

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Quantitative susceptibility mapping (QSM) provides an estimate of the magnetic susceptibility of tissue using magnetic resonance (MR) phase measurements. The tissue magnetic susceptibility (source) from the measured magnetic field distribution/local tissue field (effect) inherent in the MR phase images is estimated by numerically solving the inverse source-effect problem. This study aims to develop an effective model-based deep-learning framework to solve the inverse problem of QSM.

Materials and methods

This work proposes a Schatten \(\textit{p}\)-norm-driven model-based deep learning framework for QSM with a learnable norm parameter \(\textit{p}\) to adapt to the data. In contrast to other model-based architectures that enforce the l\(_{\text {2}}\)-norm or l\(_{\text {1}}\)-norm for the denoiser, the proposed approach can enforce any \(\textit{p}\)-norm (\(\text {0}<\textit{p}\le \text {2}\)) on a trainable regulariser.

Results

The proposed method was compared with deep learning-based approaches, such as QSMnet, and model-based deep learning approaches, such as learned proximal convolutional neural network (LPCNN). Reconstructions performed using 77 imaging volumes with different acquisition protocols and clinical conditions, such as hemorrhage and multiple sclerosis, showed that the proposed approach outperformed existing state-of-the-art methods by a significant margin in terms of quantitative merits.

Conclusion

The proposed SpiNet-QSM showed a consistent improvement of at least 5% in terms of the high-frequency error norm (HFEN) and normalized root mean squared error (NRMSE) over other QSM reconstruction methods with limited training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data/code availability

SNU dataset was made available to the authors by Prof. Lee (e-mail: jonghoyi@snu.ac.kr) of Seoul National University. LPCNN dataset is publicly available at https://github.com/Sulam-Group[16]. QSM 2016 reconstruction challenge (RC-1) dataset is publicly available at http://www.neuroimaging.at/pages/qsm.php[18]. QSM reconstruction challenge 2.0 (RC-2) dataset is publicly available at https://doi.org/10.5281/zenodo.4559541[19]. The developed codes of this manuscript are publicly shared at https://github.com/venkateshvaddadi/SpiNet-QSM.

References

  1. Deistung A, Schweser F, Reichenbach JR (2017) Overview of quantitative susceptibility mapping. NMR Biomed 30(4):e3569

    Article  Google Scholar 

  2. Schweser F, Deistung A, Reichenbach JR (2016) Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Z Med Phys 26(1):6–34

    Article  PubMed  Google Scholar 

  3. Liu C, Wei H, Gong NJ, Cronin M, Dibb R, Decker K (2015) Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography. 1(1):3–17

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reichenbach J, Schweser F, Serres B, Deistung A (2015) Quantitative susceptibility mapping: concepts and applications. Clin Neuroradiol 25(2):225–230

    Article  PubMed  Google Scholar 

  5. Schweser F, Lehr BW, Andreas D, Rainer RJ (2010) Sophisticated harmonic artifact reduction for phase data (SHARP). Proceeding Proc GC Intl Soc Mag Reson Med

  6. Sun H, Wilman AH (2014) Background field removal using spherical mean value filtering and Tikhonov regularization. Magn Reson Med 71(3):1151–1157

    Article  PubMed  Google Scholar 

  7. Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ et al (2011) A novel background field removal method for MRI using projection onto dipole fields. NMR Biomed 24(9):1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wen Y, Zhou D, Liu T, Spincemaille P, Wang Y (2014) An iterative spherical mean value method for background field removal in MRI. Magn Reson Med 72(4):1065–1071

    Article  PubMed  Google Scholar 

  9. Zhou D, Liu T, Spincemaille P, Wang Y (2014) Background field removal by solving the Laplacian boundary value problem. NMR Biomed 27(3):312–319

    Article  PubMed  Google Scholar 

  10. Yoon J, Gong E, Chatnuntawech I, Bilgic B, Lee J, Jung W et al (2018) Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 179:199–206. https://doi.org/10.1016/j.neuroimage.2018.06.030

    Article  PubMed  Google Scholar 

  11. Rasmussen KGB, Kristensen M, Blendal RG, Østergaard LR, Plocharski M, O’Brien K et al (2018) DeepQSM-using deep learning to solve the dipole inversion for MRI susceptibility mapping. BioRxiv. p. 278036

  12. Gao Y, Zhu X, Moffat BA, Glarin R, Wilman AH, Pike GB et al (2021) xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks. NMR Biomed. https://doi.org/10.1002/nbm.4461. (Cited by: 15; All Open Access, Green Open Access)

    Article  PubMed  Google Scholar 

  13. Liu T, Spincemaille P, De Rochefort L, Kressler B, Wang Y (2009) Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 61(1):196–204

    Article  PubMed  Google Scholar 

  14. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; pp 234–241

  15. Aggarwal HK, Mani MP, Jacob M (2019) MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 38(2):394–405. https://doi.org/10.1109/TMI.2018.2865356

    Article  PubMed  Google Scholar 

  16. Lai KW, Aggarwal M, van Zijl P, Li X, Sulam J (2020) Learned proximal networks for quantitative susceptibility mapping. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II 23. Springer; pp 125–135

  17. Feng R, Zhao J, Wang H, Yang B, Feng J, Shi Y et al (2021) MoDL-QSM: model-based deep learning for quantitative susceptibility mapping. Neuroimage 240:118376. https://doi.org/10.1016/j.neuroimage.2021.118376

    Article  PubMed  Google Scholar 

  18. Langkammer C, Schweser F, Shmueli K, Kames C, Li X, Guo L et al (2018) Quantitative susceptibility mapping: report from the 2016 reconstruction challenge. Magn Reson Med 79(3):1661–1673

    Article  CAS  PubMed  Google Scholar 

  19. Marques JP, Meineke J, Milovic C, Bilgic B, Ks Chan, Hedouin R et al (2021) QSM reconstruction challenge 2.0: a realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures. Magne Reson Med 86(1):526–542

    Article  Google Scholar 

  20. Rastogi A, Yalavarthy PK (2021) SpiNet: a deep neural network for Schatten p-norm regularized medical image reconstruction. Med Phys 48(5):2214–2229. https://doi.org/10.1002/mp.14744

    Article  PubMed  Google Scholar 

  21. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; p. 770–778

  22. Committee QCO, Bilgic B, Langkammer C, Marques JP, Meineke J, Milovic C et al (2021) QSM reconstruction challenge 2.0: design and report of results. Magn Reson Med 86(3):1241–1255

    Article  Google Scholar 

  23. Polak D, Chatnuntawech I, Yoon J, Iyer SS, Milovic C, Lee J et al (2020) Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM). NMR Biomed 33(12):e4271

    Article  PubMed  PubMed Central  Google Scholar 

  24. Milovic C, Bilgic B, Zhao B, Acosta-Cabronero J, Tejos C (2018) Fast nonlinear susceptibility inversion with variational regularization. Magn Reson Med 80(2):814–821

    Article  PubMed  Google Scholar 

  25. Nguyen TD, Wen Y, Du J, Liu Z, Gillen K, Spincemaille P et al (2020) Quantitative susceptibility mapping of carotid plaques using nonlinear total field inversion: initial experience in patients with significant carotid stenosis. Magn Reson Med 84(3):1501–1509

    Article  PubMed  Google Scholar 

  26. Yushkevich PA, Gao Y, Gerig G (2016) ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE 2016:3342–3345

  27. Wei H, Dibb R, Zhou Y, Sun Y, Xu J, Wang N et al (2015) Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed 28(10):1294–1303

    Article  PubMed  PubMed Central  Google Scholar 

  28. Milovic C, Tejos C, Acosta-Cabronero J, Özbay PS, Schwesser F, Marques JP et al (2020) The 2016 QSM Challenge: lessons learned and considerations for a future challenge design. Magn Reson Med 84(3):1624–1637

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lange K (2013) Optimization, vol 95. Springer Science & Business Media

    Google Scholar 

  30. Nocedal J, Wright SJ (1999) Numerical optimization. Springer

    Book  Google Scholar 

  31. Li W, Liu C, Duong TQ, van Zijl PC, Li X (2017) Susceptibility tensor imaging (STI) of the brain. NMR Biomed 30(4):e3540

    Article  Google Scholar 

  32. Milovic C, Lambert M, Langkammer C, Bredies K, Irarrazaval P, Tejos C (2022) Streaking artifact suppression of quantitative susceptibility mapping reconstructions via L1-norm data fidelity optimization (L1-QSM). Magn Reson Med 87(1):457–473

    Article  CAS  PubMed  Google Scholar 

  33. Cognolato F, O’Brien K, Jin J, Robinson S, Laun FB, Barth M et al (2023) NeXtQSM-a complete deep learning pipeline for data-consistent Quantitative Susceptibility Mapping trained with hybrid data. Med Image Anal 84:102700

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by S. Ramachandran-National Bioscience Award for Career Development awarded by Department of Biotechnology, Govt. of India. The authors are thankful to Dr. Jongho Lee, Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea, for providing the data. The authors are also thankful to Dr. Jeremias Sulam, Biomedical Engineering Department, Johns Hopkins University for making their data [16] publicly available. The authors are also thankful to Naveen Paluru and Aditya Rastogi, Indian Institute of Science, Bangalore for their input on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaneendra K. Yalavarthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, V., Mathew, R.S. & Yalavarthy, P.K. Spinet-QSM: model-based deep learning with schatten p-norm regularization for improved quantitative susceptibility mapping. Magn Reson Mater Phy (2024). https://doi.org/10.1007/s10334-024-01158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-024-01158-7

Keywords

Navigation