Skip to main content

Advertisement

Log in

The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R2*(= 1/T2*) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R2*, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R1 (= 1/T1), as well as the apparent water content.

Materials and methods

For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R1 and apparent water content.

Results

The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field.

Conclusion

These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R1 and apparent water content in white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Filippi M, Tortorella C, Rovaris M, Bozzali M, Possa F, Sormani MP, Iannucci G, Comi G (2000) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68(2):157–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46(5):923–931

    Article  PubMed  CAS  Google Scholar 

  3. Tonkova V, Arhelger V, Schenk J, Neeb H (2012) Rapid myelin water content mapping on clinical MR systems. Z Med Phys 22(2):133–142

    Article  PubMed  Google Scholar 

  4. Bender B, Klose U (2010) The in vivo influence of white matter fiber orientation towards B0 on T 2* in the human brain. NMR Biomed 23(9):1071–1076

    Article  PubMed  CAS  Google Scholar 

  5. Lee J, Shmueli K, Kang BT, Yao B, Fukunaga M, van Gelderen P, Palumbo S, Bosetti F, Silva AC, Duyn JH (2012) The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain. Neuroimage 59(4):3967–3975

    Article  PubMed  Google Scholar 

  6. Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. Neuroimage 56(3):930–938

    Article  PubMed  PubMed Central  Google Scholar 

  7. Denk C, Hernandez Torres E, MacKay A, Rauscher A (2011) The influence of white matter fibre orientation on MR signal phase and decay. NMR Biomed 24(3):246–252

    Article  PubMed  Google Scholar 

  8. Oh S-H, Kim Y-B, Cho Z-H, Lee J (2013) Origin of B0 orientation dependent R 2*(= 1/T 2*) in white matter. Neuroimage 73:71–79

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sati P, Silva AC, van Gelderen P, Gaitan MI, Wohler JE, Jacobson S, Duyn JH, Reich DS (2012) In vivo quantification of T 2* anisotropy in white matter fibers in marmoset monkeys. Neuroimage 59(2):979–985

    Article  PubMed  Google Scholar 

  10. Chen WC, Foxley S, Miller KL (2013) Detecting microstructural properties of white matter based on compartmentalization of magnetic susceptibility. Neuroimage 70:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Puwal S, Roth BJ, Basser PJ (2017) Heterogeneous anisotropic magnetic susceptibility of the myelin-water layers causes local magnetic field perturbations in axons. NMR Biomed 30(4). https://doi.org/10.1002/nbm.3628

  12. Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, De Zwart JA, Duyn JH (2013) Micro-compartment specific T 2* relaxation in the brain. Neuroimage 77:268–278

    Article  PubMed  Google Scholar 

  13. Sukstanskii AL, Yablonskiy DA (2014) On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation. Magn Reson Med 71(1):345–353

    Article  PubMed  Google Scholar 

  14. Wharton S, Bowtell R (2012) Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci USA 109(45):18559–18564

    Article  PubMed  Google Scholar 

  15. Yablonskiy DA, Sukstanskii AL (2014) Biophysical mechanisms of myelin-induced water frequency shifts. Magn Reson Med 71(6):1956–1958

    Article  PubMed  Google Scholar 

  16. Xu T, Foxley S, Kleinnijenhuis M, Chen WC, Miller KL (2017) The effect of realistic geometries on the susceptibility-weighted MR signal in white matter. Magn Reson Med. https://doi.org/10.1002/mrm.26689

    Article  PubMed  PubMed Central  Google Scholar 

  17. Trapp BD, Kidd GJ (2004) Structure of the Myelinated Axon. In: Lazzarini RA, Griffin JW, Lassman H, Nave K, Miller HR, Trapp BD (eds) Myelin biology and disorders. Elsevier Academic Press, San Diego, pp 3–27

    Google Scholar 

  18. Duyn JH (2014) Frequency shifts in the myelin water compartment. Magn Reson Med 71(6):1953–1955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pampel A, Muller DK, Anwander A, Marschner H, Moller HE (2015) Orientation dependence of magnetization transfer parameters in human white matter. Neuroimage 114:136–146

    Article  PubMed  Google Scholar 

  20. Rigaud J-L, Gary-Bobo C, Lange Y (1972) Diffusion processes in lipid-water lamellar phases. Biochim Biophys Acta 266(1):72–84

    Article  CAS  Google Scholar 

  21. Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Zamboni G, Matthews PM, Sollberger M, Smith S (2013) Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 33(5):2147–2155

    Article  PubMed  CAS  Google Scholar 

  22. Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47(3):391–395

    Article  PubMed  CAS  Google Scholar 

  23. Lee J, Nam Y, Choi JY, Kim EY, Oh SH, Kim DH (2017) Mechanisms of T 2* anisotropy and gradient echo myelin water imaging. NMR Biomed 30(4):e3513. https://doi.org/10.1002/nbm.3513

    Article  Google Scholar 

  24. Neeb H, Ermer V, Stocker T, Shah NJ (2008) Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 42(3):1094–1109

    Article  PubMed  CAS  Google Scholar 

  25. Neeb H (2012) Professional remagen diagnostic image classification tool for MS (predictMS). https://www.hs-koblenz.de/rac/fachbereiche/mut/forschung-projekte/labore-projekte/multimodal-imaging-physics/quantitative-mri-in-ms/predictms/. Accessed 15 Feb 2018

  26. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219

    Article  PubMed  Google Scholar 

  27. Neeb H, Zilles K, Shah NJ (2006) Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage 29(3):910–922

    Article  PubMed  Google Scholar 

  28. Hernández-Torres E, Wiggermann V, Hametner S, Baumeister TR, Sadovnick AD, Zhao Y, Machan L, Li DK, Traboulsee A, Rauscher A (2015) Orientation dependent MR signal decay differentiates between people with MS, their asymptomatic siblings and unrelated healthy controls. PLoS One 10(10):e0140956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lee J, van Gelderen P, Kuo L-W, Merkle H, Silva AC, Duyn JH (2011) T 2*-based fiber orientation mapping. Neuroimage 57(1):225–234

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carrington A, McLachlan AD (1967) Introduction to magnetic resonance: with applications to chemistry and chemical physics. Harper, New York

    Google Scholar 

  31. Victor KG, Korb JP, Bryant RG (2013) Translational dynamics of water at the phospholipid interface. J Phys Chem B 117(41):12475–12478

    Article  PubMed  CAS  Google Scholar 

  32. Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. Neuroimage 59(3):2088–2097

    Article  PubMed  Google Scholar 

  33. Bydder M, Rahal A, Fullerton GD, Bydder GM (2007) The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging 25(2):290–300

    Article  PubMed  Google Scholar 

  34. Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910(1–2):81–93

    Article  PubMed  CAS  Google Scholar 

  35. Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. Am J Neuroradiol 9(6):1061–1068

    PubMed  CAS  Google Scholar 

  36. Kolind S, Matthews L, Johansen-Berg H, Leite MI, Williams SC, Deoni S, Palace J (2012) Myelin water imaging reflects clinical variability in multiple sclerosis. Neuroimage 60(1):263–270

    Article  PubMed  Google Scholar 

  37. Laule C, Vavasour IM, Moore GR, Oger J, Li DK, Paty DW, MacKay AL (2004) Water content and myelin water fraction in multiple sclerosis. A T 2 relaxation study. J Neurol 251(3):284–293

    Article  PubMed  CAS  Google Scholar 

  38. Neeb H, Schenk J, Weber B (2012) Multicentre absolute myelin water content mapping: development of a whole brain atlas and application to low-grade multiple sclerosis. Neuroimage Clin 1(1):121–130

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oh J, Han ET, Lee MC, Nelson SJ, Pelletier D (2007) Multislice brain myelin water fractions at 3T in multiple sclerosis. J Neuroimaging 17(2):156–163

    Article  PubMed  Google Scholar 

  40. Campi A, Filippi M, Comi G, Scotti G, Gerevini S, Dousset V (1996) Magnetisation transfer ratios of contrast-enhancing and nonenhancing lesions in multiple sclerosis. Neuroradiology 38(2):115–119

    Article  PubMed  CAS  Google Scholar 

  41. Dousset V, Gayou A, Brochet B, Caille JM (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51(4):1150–1155

    Article  PubMed  CAS  Google Scholar 

  42. Laule C, Vavasour IM, Whittall KP, Oger J, Paty DW, Li DK, MacKay AL, Arnold DL (2003) Evolution of focal and diffuse magnetisation transfer abnormalities in multiple sclerosis. J Neurol 250(8):924–931

    Article  PubMed  Google Scholar 

  43. Rocca MA, Mastronardo G, Rodegher M, Comi G, Filippi M (1999) Long-term changes of magnetization transfer-derived measures from patients with relapsing-remitting and secondary progressive multiple sclerosis. Am J Neuroradiol 20(5):821–827

    PubMed  CAS  Google Scholar 

  44. Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, Diedrichsen J, Fitzgerald TH, Smittenaar P, Helms G, Lutti A, Weiskopf N (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35(8):1862–1872

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kullmann S, Callaghan MF, Heni M, Weiskopf N, Scheffler K, Haring HU, Fritsche A, Veit R, Preissl H (2016) Specific white matter tissue microstructure changes associated with obesity. Neuroimage 125:36–44

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rathee R, Rallabandi VP, Roy PK (2016) Age-related differences in white matter integrity in healthy human brain: evidence from structural MRI and diffusion tensor imaging. Magn Reson Insights 9:9–20

    PubMed  PubMed Central  Google Scholar 

  47. Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31(8–9):581–593

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Schyboll: Protocol/project development, data collection and management, and data analysis. Neeb: Protocol/project development and data analysis. Jaekel: Protocol/project development and data analysis. Weber: Data collection and management.

Corresponding author

Correspondence to Heiko Neeb.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Bonn and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were approved by the ethical review committee of the University of Bonn.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schyboll, F., Jaekel, U., Weber, B. et al. The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter. Magn Reson Mater Phy 31, 501–510 (2018). https://doi.org/10.1007/s10334-018-0678-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0678-8

Keywords

Navigation