Skip to main content
Log in

Synthesis and characterization of polyethylenimine-based iron oxide composites as novel contrast agents for MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Use of polyethylenimines (PEIs) of different molecular weight and selected carboxylated-PEI derivatives (PEI-COOH) in the synthesis and stabilization of iron oxide nanoparticles, to obtain possible multifunctional contrast agents.

Materials and methods

Oxidation of Fe(II) at slightly elevated pH and temperature resulted in the formation of highly soluble and stable nanocomposites of iron oxides and polymer. Composites were characterized and studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffractometry, AC and DC magnetometry, NMR relaxometry and magnetic resonance imaging (MRI).

Results

From AFM the dimensions of the aggregates were found to be in the ~150–250 nm size region; the mean diameter of the magnetic core of the compounds named PEI-25, PEI-500 and PEI-COOH60 resulted d ~20  ± 5 nm for PEI-25, d ~9.5  ± 1.0 nm for PEI-500 and d ~6.8  ± 1.0 nm for PEI-COOH60. In PEI-COOH60 TEM and X-ray diffractometry revealed small assemblies of mineral magnetic cores with clear indications that the main constituents are maghemite and/or magnetite as confirmed by AC and DC SQUID magnetometry. For PEI-COOH60, the study of NMR-dispersion profiles revealed r 1 and r 2 relaxivities comparable to superparamagnetic iron-oxide commercial compounds in the whole investigated frequency range 7 ≤ ν ≤ 212 MHz.

Conclusion

PEI-25 was studied as possible MRI contrast agent (CA) to map the cerebral blood volume (CBV) and cerebral blood flow (CBF) in an animal model obtaining promising results. The reported compounds may be further functionalized to afford novel multifunctional systems for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rinck PA (1993) Magnetic resonance in medicine, 3rd edn. Blackwell, Oxford

    Google Scholar 

  2. Laurent S, Elst LV, Roch A, Muller RN (2007) In: Carretta P, Lascialfari A (eds) NMR–MRI, μSR and Mossbauer spectroscopies in molecular magnets. Springer, Italy, pp 71–88

  3. Lascialfari A, Corti M (2007) In: Carretta P, Lascialfari A NMR-MRI, μSR and Mossbauer spectroscopies in molecular magnets. Springer, Italy, pp 89–110

  4. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120: 4877–4878

    Article  CAS  Google Scholar 

  5. Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites I. Synthesis of zero-valent copper nanoclusters. J Am Chem Soc 120: 7355–7356

    Article  CAS  Google Scholar 

  6. Zhao M, Sun L, Crooks RM (1999) Dendrimer-encapsulated transition metal nanocluster: synthesis, characterization, and applications to catalysts. Polym Prepr (Am Chem Soc Div Polym Chem) 40: 400–401

    CAS  Google Scholar 

  7. Garcia ME, Baker LA, Crooks RM (1999) Preparation and characterization of dendrimer-gold colloid nanocomposites. Anal Chem 71: 256–258

    Article  CAS  Google Scholar 

  8. Zhao M, Crooks RM (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11: 217–220

    Article  CAS  Google Scholar 

  9. Sooklal K, Hanus LH, Ploehn HJ, Murphy CJ (1998) A blue emitting CdS-dendrimer nanocomposite. Adv Mater 10: 1083–1087

    Article  CAS  Google Scholar 

  10. Sooklal K, Huang J, Murphy CJ, Hanus L, Ploehn HJ (1999) Inorganic quantum dot-organic dendrimer nanocomposite material. Mater Res Soc Symp Proc 576: 439–444

    CAS  Google Scholar 

  11. Huang JM, Murphy CJ (1999) Luminescence of CdS nanoparticles doped and activated with foreign ions. Mater Res Soc Symp Proc 560: 33–38

    CAS  Google Scholar 

  12. Groehn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Dendrimers as nanotemplates for the formation of inorganic colloids. Macromolecules 33: 6042–6050

    Article  CAS  Google Scholar 

  13. Keki S, Torok J, Deak G, Daroczi L, Zsuga M (2000) Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J Colloid Interface Sci 229: 550–553

    Article  PubMed  CAS  Google Scholar 

  14. Esumi K, Hosoya T, Suzuki A, Torigoe K (2000) Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers. J Colloid Interface Sci 226: 346–352

    Article  CAS  Google Scholar 

  15. Meldrum FC, Heywood BR, Mann S (1999) Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257: 522–523

    Article  Google Scholar 

  16. Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349: 684–687

    Article  CAS  Google Scholar 

  17. Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393: 152–155

    Article  CAS  Google Scholar 

  18. Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline Fe2O3: a new optically transparent magnetic material. Science 257: 219–223

    Article  PubMed  CAS  Google Scholar 

  19. Tang BZ, Geng Y, Lam JWY, Li B, Jing X, Wang X, Wang F, Pakhomov AB, Zhang XX (1999) Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films. Chem Mater 11: 1581–1589

    Article  CAS  Google Scholar 

  20. Mann S, Hannington JP, Williams RJP (1986) Phospholipid vesicles as a model system for biomineralization. Nature 324: 565–567

    Article  CAS  Google Scholar 

  21. De Cuyper M, Joniau M (1988) Magnetoliposomes. Formation and structural characterization. Eur Biophys J 15: 311–319

    Article  PubMed  Google Scholar 

  22. Bulte JWM, de Cuyper M, Despres D, Frank JA (1999) Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. J Magn Magn Mater 194: 204–209

    Article  CAS  Google Scholar 

  23. Corti M, Lascialfari A, Marinone M, Masotti A, Micotti E, Orsini F, Ortaggi G, Poletti G, Innocenti C, Sangregorio C (2008) Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents. J Magn Magn Mater 320: e316–e319

    Article  CAS  Google Scholar 

  24. Bulte J, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, Van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19: 1141–1147

    Article  PubMed  CAS  Google Scholar 

  25. Masotti A, Vicennati P, Boschi F, Calderan L, Sbarbati A, Ortaggi G (2008) A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo. Bioconjug Chem 19(5): 983–987

    Article  PubMed  CAS  Google Scholar 

  26. Putman CAJ, van der Werft K, de Grooth BG, van Hulst NF, Greve J, Hansma PK (1992) New imaging mode in the atomic force microscopy based on the error signal. Proc SPIE 1639: 198–204

    Article  Google Scholar 

  27. Deichmann R, Haase A (1992) Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 96: 608–612

    CAS  Google Scholar 

  28. Rowley HA, Roberts TPL (2004) Clinical perspectives in perfusion: neuroradiologic applications. Top Magn Reson Imaging 15: 28–40

    Article  PubMed  Google Scholar 

  29. Haraldseth O, Jones RA, Muller TB, Fahlvik AK, Oksendal AN (1996) Comparison of dysprosium DTPA BMA and superparamagnetic iron oxide particles as susceptibility contrast agents for perfusion imaging of regional cerebral ischemia in the rat. J Magn Reson Imaging 6: 714–717

    Article  PubMed  CAS  Google Scholar 

  30. Masotti A, Ortaggi G (2008) Peptide nucleic acid (PNA)-polyethylenimine (PEI) conjugates. Promising multifunctional therapeutic tools for the future. Oligonucleotides 18(3): 301–303

    CAS  Google Scholar 

  31. Hamberg LM, Boccalini P, Stranjalis G, Hunter GJ, Huang Z, Halpern E, Weisskoff RM, Moskowitz MA, Rosen BR (1996) Continuous assessment of relative cerebral blood volume in transient ischemia using steady state susceptibility-contrast MRI. Magn Reson Med 35: 168–173

    Article  PubMed  CAS  Google Scholar 

  32. Sbarbati A, Reggiani A, Lunati E, Arban R, Nicolato E, Marzola P, Asperio RM, Bernardi P, Osculati F (2000) Regional cerebral blood volume mapping after ischemic lesions. Neuroimage 12: 418–424

    Article  PubMed  CAS  Google Scholar 

  33. Masotti A, Moretti F, Mancini F, Russo G, Di Lauro N, Checchia P, Marianecci C, Carafa M, Santucci E, Ortaggi G (2007) Physicochemical and biological study of selected hydrophobic polyethylenimine-based polycationic liposomes and their complexes with DNA. Bioorg Med Chem 15(3): 1504–1515

    Article  PubMed  CAS  Google Scholar 

  34. Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. J Magn Magn Mater 289: 439–441

    Article  CAS  Google Scholar 

  35. Bulte JWM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3: 641–648

    Article  PubMed  CAS  Google Scholar 

  36. Bulte JWM, Brooks RA (1997) Scientific and clinical applications of magnetic carriers. In: Häfeli U (ed) Plenum Press, New York, pp 527–542

  37. Boni A, Marinone M, Innocenti C, Sangregorio C, Corti M, Lascialfari A, Mariani M, Orsini F, Poletti G, Casula MF (2008) Magnetic and relaxometric properties of Mn-ferrites. J Phys D Appl Phys 14: 134021/1–134021/6

    Google Scholar 

  38. Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110: 5403–5411

    Article  CAS  Google Scholar 

  39. Masotti A, Vicennati P, Ortaggi G (2008) Multifunctional delivery vehicles for biomedical applications: polyethylenimine as a multipurpose polymer. In: Colombo GP, Ricci S (eds) Medicinal chemistry research progress, chap 6. Nova Science Publishers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Masotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masotti, A., Pitta, A., Ortaggi, G. et al. Synthesis and characterization of polyethylenimine-based iron oxide composites as novel contrast agents for MRI. Magn Reson Mater Phy 22, 77–87 (2009). https://doi.org/10.1007/s10334-008-0147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0147-x

Keywords

Navigation