Skip to main content
Log in

Polyethyleneimine-modified iron oxide nanoparticles: their synthesis and state in water and in solutions of ligands

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Water-soluble iron oxide nanoparticles (IONPs) are synthesized from oleate-stabilized particles (IONPs-OA) by replacing oleate moieties with 3,4-dihydroxybenzoic acid (3,4-DHB) and polyethyleneimine (PEI). Investigation of the obtained composite nanoparticles by TEM, SEM, and AFM methods demonstrated that the parent IONPs-OA particles have a narrow size distribution and that the size of the magnetite core (4.3 nm) was retained in the polyethyleneimine modified IONPs-PEI nanoparticles (4.5 nm). IONPs-PEI exist in the form of separate nanoparticles distributed in the bulk polymer matrix as well as elongated chains (up to 20 nm in length) consisting of 3–6 nanoparticles, and mostly in the form of large clusters (~ 150 nm). The NMR relaxometric properties of IONPs-PEI in the water at various pHs are determined. Relaxivity of such modified nanoparticles remains constant over a wide pH range (3–9) and decreases only in strongly alkaline solutions due to the destruction processes. In the presence of physiological amounts of NaCl (0.15 M), the relaxivity of IONPs-PEI solutions is reduced by 37%. The effect of the addition of various iron(III) chelators is analyzed. Tiron (disodium 4,5-dihydroxy-1,3-benzenedisulfonate) is the only ligand which destroys the polymer-bound IONP system in solution, dissolving the iron oxide core, while other ligands (3,4-DHB, 2,4-DHB, citric acid) do not reduce the relaxation of the composite aqueous solution. The developed polyethyleneimine-modified iron oxide nanoparticles can be regarded as a promising model of a contrast agent for magnetic resonance imaging (MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications, Imperial college press

  2. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753

    Article  CAS  Google Scholar 

  3. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12)

  4. Edelstein A S, Cammaratra R (1998) Nanomaterials: Synthesis, properties and applications, CRC press

  5. Fu C, Ravindra NM (2012) Magnetic iron oxide nanoparticles: synthesis and applications. Bioinspired, Biomimetic and Nanobiomaterials 1(4):229–244

    Article  CAS  Google Scholar 

  6. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  Google Scholar 

  7. Rossi LM, Costa NJ, Silva FP, Wojcieszak R (2014) Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem 16(6):2906–2933

    Article  CAS  Google Scholar 

  8. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45

    Article  CAS  Google Scholar 

  9. Cornell R, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses.--Willey-VCH Verlag GmbH & co

  10. Cullity BD, Graham CD (2011) Introduction to magnetic materials, John Wiley & Sons

  11. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939

    Article  CAS  Google Scholar 

  12. Wen X, Yang J, He B, Gu Z (2008) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8(5):535–541

    Article  Google Scholar 

  13. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  Google Scholar 

  14. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183–186

    Article  CAS  Google Scholar 

  15. Lai CW, Low FW, Tai MF, Abdul Hamid SB (2017) Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv Polym Technol

  16. Chanana M, Jahn S, Georgieva R, Lutz J-F, Baumler H, Wang D (2009) Fabrication of colloidal stable, thermosensitive, and biocompatible magnetite nanoparticles and study of their reversible agglomeration in aqueous milieu. Chem Mater 21(9):1906–1914

    Article  CAS  Google Scholar 

  17. Aeineh N, Salehi F, Akrami M, Nemati F, Alipour M, Ghorbani M, Nikfar B, Salehian F, Riyahi Alam N, Sadat Ebrahimi SE, Foroumadi A, Khoobi M, Rouini M, Dibaei M, Haririan I, Ganjali MR, Safaei S (2018) Glutathione conjugated polyethylenimine on the surface of Fe3O4 magnetic nanoparticles as a theranostic agent for targeted and controlled curcumin delivery. J Biomater Sci Polym Ed 29(10):1109–1125. https://doi.org/10.1080/09205063.2018.1427013

    Article  CAS  Google Scholar 

  18. Ai H (2011) Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63(9):772–788

    Article  CAS  Google Scholar 

  19. Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17(46):4914

    Article  CAS  Google Scholar 

  20. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  21. Ni D, Bu W, Ehlerding EB, Cai W, Shi J (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46(23):7438–7468

    Article  CAS  Google Scholar 

  22. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40(24):6315–6343

    Article  CAS  Google Scholar 

  23. Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, Li Y, Wang X, Liu G, Liu Z (2014) Ultra-small Iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 24 (9)

  24. Thorat ND, Lemine OM, Bohara RA, Omri K, El Mir L, Tofail SA (2016) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18(31):21331–21339

    Article  CAS  Google Scholar 

  25. Sosa-Acosta JR, Silva JA, Fernández-Izquierdo L, Díaz-Castañón S, Ortiz M, Zuaznabar-Gardona JC, Díaz-García AM (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178

    Article  CAS  Google Scholar 

  26. Zaaeri F, Khoobi M, Rouini M, Akbari Javar H (2017) pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int J Polym Mater Polym Biomater, 1–11

  27. Belanova AA, Gavalas N, Makarenko YM, Belousova MM, Soldatov AV, Zolotukhin PV (2018) Physicochemical properties of magnetic nanoparticles: implications for biomedical applications in vitro and in vivo. Oncol Res Treat 41(3):139–143. https://doi.org/10.1159/000485020

    Article  CAS  Google Scholar 

  28. Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68(1):129–137

    Article  CAS  Google Scholar 

  29. Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, In I, Park SY (2013) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C Mater Biol Appl 33(7):3786–3794

    Article  CAS  Google Scholar 

  30. Soares PI, Sousa AI, Ferreira IM, Novo CM, Borges JP (2016) Towards the development of multifunctional chitosan-based iron oxide nanoparticles: optimization and modelling of doxorubicin release. Carbohydr Polym 153:212–221

    Article  CAS  Google Scholar 

  31. Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5(5):1722–1731

    Article  CAS  Google Scholar 

  32. Goon IY, Lai LM, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21(4):673–681

    Article  CAS  Google Scholar 

  33. Korpany KV, Habib F, Murugesu M, Blum AS (2013) Stable water-soluble iron oxide nanoparticles using Tiron. Mater Chem Phys 138(1):29–37

    Article  CAS  Google Scholar 

  34. Korpany KV, Majewski DD, Chiu CT, Cross SN, Blum AS (2017) Iron oxide surface chemistry: effect of chemical structure on binding in benzoic acid and catechol derivatives. Langmuir 33(12):3000–3013

    Article  CAS  Google Scholar 

  35. Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557

    Article  CAS  Google Scholar 

  36. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    Article  CAS  Google Scholar 

  37. Do MA, Yoon GJ, Yeum JH, Han M, Chang Y, Choi JH (2014) Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging. Colloids Surf B 122:752–759

    Article  CAS  Google Scholar 

  38. Bi C, Liang Y, Shen L, Tian S, Zhang K, Li Y, He X, Chen L, Zhang Y (2018) Maltose-functionalized hydrophilic magnetic nanoparticles with polymer brushes for highly selective enrichment of N-linked glycopeptides. ACS Omega 3(2):1572–1580. https://doi.org/10.1021/acsomega.7b01788

    Article  CAS  Google Scholar 

  39. Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 31 (24), 6317–24

    Article  CAS  Google Scholar 

  40. Luo D, Shahid S, Hasan SM, Whiley R, Sukhorukov GB, Cattell MJ (2018) Controlled release of chlorhexidine from a HEMA-UDMA resin using a magnetic field. Dent Mater 34(5):764–775

    Article  CAS  Google Scholar 

  41. Shen T, Zhu W, Yang L, Liu L, Jin R, Duan J, Anderson JM, Ai H (2018) Lactosylated N-alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. Regen Biomater 5:141–149

    Article  Google Scholar 

  42. Thünemann AF, Schütt D, Kaufner L, Pison U, Möhwald H (2006) Maghemite nanoparticles protectively coated with poly (ethylene imine) and poly (ethylene oxide)-b lock-poly (glutamic acid). Langmuir 22(5):2351–2357

    Article  Google Scholar 

  43. Schweiger C, Pietzonka C, Heverhagen J, Kissel T (2011) Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm 408(1–2):130–137

    Article  CAS  Google Scholar 

  44. Shen M, Wang SH, Shi X, Chen X, Huang Q, Petersen EJ, Pinto RA, Baker Jr JR, Weber Jr WJ (2009) Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113(8):3150–3156

    Article  CAS  Google Scholar 

  45. Chen B, Liu Y, Chen S, Zhao X, Meng X, Pan X (2016) Magnetically recoverable cross-linked polyethylenimine as a novel adsorbent for removal of anionic dyes with different structures from aqueous solution. J Taiwan Inst Chem Eng 67:191–201

    Article  CAS  Google Scholar 

  46. Saharan P, Chaudhary GR, Mehta SK, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. J Nanosci Nanotechnol 14(1):627–643

    Article  CAS  Google Scholar 

  47. Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347(1):1–7

    Article  CAS  Google Scholar 

  48. Jiang W, Lai K-L, Hu H, Zeng X-B, Lan F, Liu K-X, Wu Y, Gu Z-W (2011) The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J Nanopart Res 13(10):5135–5145

    Article  CAS  Google Scholar 

  49. Yuen AK, Hutton GA, Masters AF, Maschmeyer T (2012) The interplay of catechol ligands with nanoparticulate iron oxides. Dalton Trans 41(9):2545–2559

    Article  CAS  Google Scholar 

  50. Na HB, Palui G, Rosenberg JT, Ji X, Grant SC, Mattoussi H (2011) Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6(1):389–399

    Article  Google Scholar 

  51. Huang Q, Fang L, Chen X, Saleem M (2011) Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells. J Alloys Compd 509(39):9456–9459

    Article  CAS  Google Scholar 

  52. Hossaini Nasr S, Tonson A, El-Dakdouki MH, Zhu DC, Agnew D, Wiseman R, Qian C, Huang X (2018) Effects of nanoprobe morphology on cellular binding and inflammatory responses: Hyaluronan-conjugated magnetic nanoworms for magnetic resonance imaging of atherosclerotic plaques. ACS Appl Mater Interfaces 10(14):11495–11507

    Article  CAS  Google Scholar 

  53. Dodoo S, Steitz R, Laschewsky A, von Klitzing R (2011) Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys Chem Chem Phys 13(21):10318–10325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR, according to the research project no. 18-33-00441.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given their approval to the final version of the manuscript.

Corresponding author

Correspondence to Alexander N. Solodov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Additional XRD, TEM, SEM, and relaxivity data for characterization of investigated IONPs.

ESM 1

(PDF 1187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodov, A.N., Shayimova, J.R., Burilova, E.A. et al. Polyethyleneimine-modified iron oxide nanoparticles: their synthesis and state in water and in solutions of ligands. Colloid Polym Sci 296, 1983–1993 (2018). https://doi.org/10.1007/s00396-018-4425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4425-5

Keywords

Navigation