Skip to main content

Advertisement

Log in

Effects of functional electrical stimulation in denervated thigh muscles of paraplegic patients mapped with T 2 imaging

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Functional electrical stimulation (FES) for paraplegic patients, with the long-term goal of ultimately restoring muscle function, is associated with several positive effects: improvement of blood circulation, skin condition, peripheral trophism and metabolism, prophylaxis against decubitus ulcer and better physical fitness. Since fibres of denervated muscles (lacking a supplying nerve) need to be activated directly, the fraction of elicited muscle tissue follows the geometric distribution of the electrical field, which can be simulated using electrophysiological computer models. Experimental validation of these results, however, has not yet been established.

Materials and methods

We acquired T 2 parameter images using a multislice multi-spin-echo MR sequence before and immediately after FES in nine denervated paraplegic patients and three healthy subjects in order to visualise the geometric distribution of activation by electrically induced muscle stimulation in denervated versus innervated (healthy) thigh muscle.

Results and Conclusion

After realigning and normalisation, maps of relative T 2 increase were calculated. The results demonstrate that the spatial distribution of short-term effects of FES of denervated muscle tissue of paraplegic patients who regularly perform FES can be visualised by T 2 parameter images. This may be used to refine models of the electrical field of FES in muscle and fibre activation in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kern H, Hofer C, Mödlin M, Forstner C, Raschka-Högler D, Mayr W, Stöhr H (2002) Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artif Organs 26: 216–218

    Article  PubMed  Google Scholar 

  2. Mayr W, Hofer C, Bijak M, Rafolt D, Unger E, Reichel M, Sauermann S, Lanmueller H, Kern H (2002) Functional electrical stimulation (FES) of denervated muscles: existing and prospective technical solutions. Basic Appl Myol 12: 287–290

    Google Scholar 

  3. Kern H (1995) Funktionelle Elektrostimulation paraplegischer Patienten. Österr Z Phys Medizin 5: 1–78

    Google Scholar 

  4. Martinek J, Reichel M, Rattay F, Mayr W (2005) Analysis of calculated electrical activation of denervated muscle fibers in the human thigh. Artif Organs 29: 444–447

    Article  PubMed  Google Scholar 

  5. Reichel M, Mayr W, Rattay F (1999) Computer simulation of field distribution and excitation of denervated muscle fibers caused by surface electrodes. Artif Organs 23: 453–456

    Article  PubMed  CAS  Google Scholar 

  6. Reichel M, Breyer T, Mayr W, Rattay F (2002) Simulation of the three-dimensional electrical field in the course of functional electrical stimulation. Artif Organs 26: 252–255

    Article  PubMed  Google Scholar 

  7. Polak JF, Jolesz FA, Adams DF (1988) Magnetic resonance imaging of skeletal muscle. Prolongation of T1 and T2 subsequent to denervation. Invest Radiol 23: 365–369

    Article  PubMed  CAS  Google Scholar 

  8. Koltzenburg M, Bendszus M (2004) Imaging of peripheral nerve lesions. Curr Opin Neurol 17: 621–

    Article  PubMed  Google Scholar 

  9. Fleckenstein JL, Watumull D, Conner KE, Ezaki M, Greenlee RG, Bryan WW, Chason DP, Parkey RW, Peshock RM, Purdy PD (1993) Denervated human skeletal muscle: MR imaging evaluation. Radiology 187: 213–218

    PubMed  CAS  Google Scholar 

  10. Bendszus M, Koltzenburg M, Wessig C, Solymosi L (2002) Sequential mr imaging of denervated muscle: experimental study. Am J Neuroradiol 23: 1427–1431

    PubMed  Google Scholar 

  11. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534: 613–623

    Article  PubMed  CAS  Google Scholar 

  12. Hayashi Y, Ikata T, Takai H, Takata S, Ishikawa M, Sogabe T, Koga K (1997) Effect of peripheral nerve injury on nuclear magnetic resonance relaxation times of rat skeletal muscle. Invest Radiol 32: 135–139

    Article  PubMed  CAS  Google Scholar 

  13. Mödlin M, Forstner C, Hofer C, Mayr W, Richter W, Carraro U, Protasi F, Kern H (2005) Electrical stimulation of denervated muscles: first results of a clinical study. Artif Organs 29: 203–206

    Article  PubMed  Google Scholar 

  14. Kern H, Hofer C, Mödlin M, Forstner C, Mayr W, Richter W (2002) Functional electrical stimulation (FES) of long-term denervated muscles in humans: clinical observations and laboratory findings. Basic Appl Myol 12: 291–299

    Google Scholar 

  15. Carraro U, Rossini K, Mayr W, Kern H (2005) Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Organs 29: 187–191

    Article  PubMed  Google Scholar 

  16. Kern H, Boncompagni S, Rossini K, Mayr W, Fanò G, Zanin M, Podhorska-Okolow M, Protasi F, Carraro U (2004) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration. J Neuropathol Exp Neurol 63: 919–931

    PubMed  Google Scholar 

  17. Fleckenstein AL, Canby RC, Parkey RW, Peshock RM (1988) Accute effects of exercise on MR imaging of skeletal muscle in normal volunteers. Am J Roentgenol 151: 271–237

    Google Scholar 

  18. Hug F, Bendahan D, Fur YL, Cozzone PJ, Grelot L (2004) Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study. Eur J Appl Physiol 92: 334–42

    Article  PubMed  Google Scholar 

  19. Jehenson P, Leroy-Willig A, de Kerviler E, Duboc D, Syrota A (1993) MR imaging as a potential diagnostic test for metabolic myopathies: importance of variations in the T2 of muscle with exercise. Am J Roentgenol 161: 347–351

    CAS  Google Scholar 

  20. Kern H, Hofer C, Strohhofer M, Mayr W, Richter W, Stöhr H (1999) Standing up with denervated muscles in humans using functional electrical stimulation. Artif Organs 23: 447–452

    Article  PubMed  CAS  Google Scholar 

  21. Hofer C, Mayr W, Stöhr H, Unger E, Kern H (2002) A stimulator for functional activation of denervated muscles. Artif Organs 26: 276–279

    Article  PubMed  Google Scholar 

  22. Moser E, Schuster J, Gomiscek G (1989) Analysis of relaxation time data from a low-resolution 1H-NMR-pulse-spectrometer. Physiol Chem Phys Med NMR 21: 123–132

    PubMed  CAS  Google Scholar 

  23. Gersonde K, Tolxdorff T, Felsberg L (1985) Identification and characterization of tissues by T 2-selective whole-body proton NMR imaging. Magn Reson Med 2: 390–401

    Article  PubMed  CAS  Google Scholar 

  24. Walker P, Lerski R, Mathur-De Vre R, Binet J, Yane F (1988) Preparation of agarose gels as reference substances for NMR relaxation time measurement. EEC Concerted Action Program. Magn Reson Imaging 6: 215–222

    Article  PubMed  CAS  Google Scholar 

  25. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192–205

    Article  PubMed  CAS  Google Scholar 

  26. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11: 36–42

    Google Scholar 

  27. Rasband WS (1997–2007) ImageJ. National Institutes of Health, Bethesda

  28. Patten C, Meyer R, Fleckenstein J (2003) T 2 mapping of muscle. Semin Musculoskelet Radiol 7: 297–305

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerspeer, M., Mandl, T., Reichel, M. et al. Effects of functional electrical stimulation in denervated thigh muscles of paraplegic patients mapped with T 2 imaging. Magn Reson Mater Phy 21, 219–226 (2008). https://doi.org/10.1007/s10334-008-0113-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0113-7

Keywords

Navigation