Skip to main content
Log in

A study on the overexpression of microRNAs and lung cancer

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

MicroRNAs (miRNAs), which contains approximately 22 nt, belong to a small endogenous, non-coding regulatory single-stranded RNA molecules. They are posttranscriptional regulators of gene expression and highly conserved in evolution. Many researches show that miRNAs involved in many processes, including tumor formation, cell proliferation and apoptosis and proliferation and metastasis of cancer cells. Among that, the relationship between miRNAs and lung cancer is one of the most focal areas for the researchers, because the abnormal expressions of miRNAs were significantly associated with the occurrence and development of lung cancer. The expression level of different miRNAs in lung cancer cells exist differences, compared with normal lung tissue cells, there are two classes of expression: over-expression level and low expression level. In this review, we focused on studying the mechanism of overexpression miRNAs in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu QS, Wang XC. Gene silencing: mechanism and methods. Kunming: Yunnan Science and Technology Publishing Press, 2005. 1–25.

    Google Scholar 

  2. Yates LA, Norbury CJ, Gilbert RI. The long and short of microRNA. Cell. 2013, 153: 516–519.

    Article  CAS  PubMed  Google Scholar 

  3. Xiao LB, Wu ZP, Feng R, et al. MicroRNAs and Cancer. Chinese-German J Clin Oncol, 2010, 9: 547–554.

    Article  CAS  Google Scholar 

  4. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294: 853–858.

    Article  CAS  PubMed  Google Scholar 

  5. Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 2003, 13: 790–795.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell, 2006, 26: 767–774.

    Article  Google Scholar 

  7. Leaman D, Chen PY, Fak J, et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell, 2005, 121: 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  8. Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113: 25–36.

    Article  CAS  PubMed  Google Scholar 

  9. Shi Y, Jin YX. MicroRNA and cell differentiation and development. Sci China, 2009, 52: 205–211.

    Article  CAS  Google Scholar 

  10. Zhou F, Zhuang SM. MicroRNA and tumor. Chin Bull Life Sci (Chinese), 2008, 20: 207–212.

    Google Scholar 

  11. Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137: 1005–1017.

    Article  CAS  PubMed  Google Scholar 

  12. Li YW, Vandenboom TG2nd, Wang ZW, et al. MiR-146a suppresses invasion of pancreatic cancer cells. Cancer Res, 2010, 70: 1486–1495.

    Article  CAS  PubMed  Google Scholar 

  13. Creighton CJ, Fountain MD, Yu ZF, et al. Molecular profiling uncovers a p53-associated role for micriRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res, 2010, 70: 1906–1915.

    Article  CAS  PubMed  Google Scholar 

  14. Luo H, Zhang H, Zhang Z, et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res, 2009, 28: 82–90.

    Article  PubMed  Google Scholar 

  15. Jemal A, Bray F, Center MM, et al. Global Cancer Statistics. CA Cancer J Clin, 2011, 61: 69–90.

    Article  PubMed  Google Scholar 

  16. Herbst RS, Heymach JV, Lippman SM. Lung Cancer. N Engl J Med, 2008, 359: 1367–1380.

    Article  CAS  PubMed  Google Scholar 

  17. Xiong S, Zheng Y, Jiang P, et al. MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci, 2011, 7: 805–814.

    Article  CAS  PubMed  Google Scholar 

  18. Xia XM, Jin WY, Shi RZ, et al. Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett, 2010, 1: 1045–1047.

    CAS  PubMed  Google Scholar 

  19. Chen Z, Zeng H, Guo Y, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res, 2010, 29: 151–160.

    Article  PubMed  Google Scholar 

  20. Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res, 2010, 70: 5923–5930.

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Bai Y, Zhang F, et al. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun, 2010, 391: 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  22. Valastyan S, Weinberg RA. miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle, 2010, 9: 2124–2129.

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Sempere LF, et al. microRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest, 2010, 120: 1298–1309.

    Article  CAS  PubMed  Google Scholar 

  24. Sun M, Liu XH, Li JH, et al. MiR-196a Is Upregulated in Gastric Cancer and Promotes Cell Proliferation by Downregulating p27 (kip1). Mol Cancer Ther, 2012, 11: 842–852.

    Article  CAS  PubMed  Google Scholar 

  25. Braig S, Mueller DW, Rothhammer T, et al. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci, 2010, 67: 3535–3548.

    Article  CAS  PubMed  Google Scholar 

  26. Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanomaassociated genes by regulating HOX-C8 expression. Int J Cancer, 2011, 129: 1064–1074.

    Article  CAS  PubMed  Google Scholar 

  27. Luthra R, Singh RR, Luthra MG, et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene, 2008, 27: 6667–6678.

    Article  CAS  PubMed  Google Scholar 

  28. Liu XH, Lu KH, Wang KM, et al. microRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer, 2012, 12: 348.

    Article  CAS  PubMed  Google Scholar 

  29. Gao W, Xu J, Liu L, et al. A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother, 2012, 66: 21–28.

    Article  CAS  PubMed  Google Scholar 

  30. Lan H, Lin C, Yuan H, et al. Overpression of miR-21 promotes proliferation and reduces apoptosis in non-small cell lung cancer. Chin J Oncol (Chinese), 2011, 33: 742–746.

    CAS  Google Scholar 

  31. Zhang JG, Wang JJ, Zhao F, et al. miR-21 represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer. Clin Chim Acta, 2010, 411: 846–852.

    Article  CAS  PubMed  Google Scholar 

  32. Seike M, Goto A, Okano T, et al. miR-21 is an EGFR-regulated antiapoptotic factor in lung cancer in never-smokers. Proc Natl Sci USA, 2009, 106: 12085–12090.

    Article  CAS  Google Scholar 

  33. Zhu WY, Liu XG, He JY, et al. Over expression of members of the microRNA-183 family is a risk factor for lung cancer: A case control study. BMC Cancer, 2011, 11:193.

    Article  Google Scholar 

  34. Babar IA, Czochor J, Steinmetz A, et al. Inhibition of hypoxia-induced miR-155 radio sensitizes hypoxic lung cancer cells. Cancer Biol Ther, 2011, 12: 908–914.

    Article  CAS  PubMed  Google Scholar 

  35. Hutvagner G, Simard MJ, Mello CC, et al. Sequence-specific inhibition of small RNA function. PLoS Biol, 2004, 2: E98.

    Article  PubMed  Google Scholar 

  36. Luo XP, Zhang YZ, Zhao HF. The progress and application of antisense oligonucleotide technology. Acta Univ Med Second Shanghai (Chinese), 2000, 2: 185–187.

    Google Scholar 

  37. Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 2004, 10: 544–550.

    Article  CAS  PubMed  Google Scholar 

  38. Tan Gana NH, Onuki T, Victoriano AF, et al. microRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level. Front Microbiol, 2012, 3: 306–317.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qishun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Wu, Z., Chen, Y. et al. A study on the overexpression of microRNAs and lung cancer. Chin. -Ger. J. Clin. Oncol. 12, 443–447 (2013). https://doi.org/10.1007/s10330-013-1199-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-013-1199-6

Key words

Navigation