Skip to main content

Advertisement

Log in

Research of the relationship between radiotherapy and microRNAs

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

MicroRNAs (miRNAs) are endogenous short non-coding RNAs, and play a pivotal role in regulating a variety of cellular processes, including proliferation and apoptosis, both of which are cellular responses to radiation treatment. In response to radiation, multiple miRNAs show altered expression, which act as oncogenes or tumor suppressors. Recent evidence has also shown that some miRNAs have radiotherapy sensitization or radiation resistance role in malignant tumors. This review focuses on analysis of these characteristics and mechanisms of miRNAs, and will provide some insight into the therapeutic application of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843–854.

    Article  PubMed  CAS  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75: 855–862.

    CAS  Google Scholar 

  3. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901–906.

    Article  PubMed  CAS  Google Scholar 

  4. Basyuk E, Suavet F, Doglio A, et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res, 2003, 31: 6593–6597.

    Article  PubMed  CAS  Google Scholar 

  5. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408: 86–89.

    Article  PubMed  CAS  Google Scholar 

  6. Ambros V. MicroRNAs: tiny regulators with great potential. Cell, 2001, 107: 823–826.

    Article  PubMed  CAS  Google Scholar 

  7. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol, 2009, 27: 5848–5856.

    Article  PubMed  CAS  Google Scholar 

  8. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 2009, 11: 1487–1495.

    Article  PubMed  CAS  Google Scholar 

  9. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell, 2009, 136: 586–591.

    Article  PubMed  CAS  Google Scholar 

  10. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA, 2004, 101: 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99: 15524–15529.

    Article  PubMed  CAS  Google Scholar 

  12. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting Bcl-2. Proc Natl Acad Sci USA, 2005, 102: 13944–13949.

    Article  PubMed  CAS  Google Scholar 

  13. Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 2005, 353: 1793–1801.

    Article  PubMed  CAS  Google Scholar 

  14. Haverty PM, Fridlyand J, Li L, et al. High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer, 2008, 47: 530–542.

    Article  PubMed  CAS  Google Scholar 

  15. Han L, Witmer PD, Casey E, et al. DNA methylation regulates microRNA expression. Cancer Biol Ther, 2007, 6: 1284–1288.

    Article  PubMed  CAS  Google Scholar 

  16. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer, 2010, 10: 389–402.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis MA, Quint E, Glazier AM, et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet, 2009, 41: 614–618.

    Article  PubMed  CAS  Google Scholar 

  18. Mencía A, Modamio-Høybjør S, Redshaw N, et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet, 2009, 41: 609–613.

    Article  PubMed  Google Scholar 

  19. Gottwein E, Cai X, Cullen BR. Expression and function of microRNAs encoded by Kaposi’s sarcoma-associated herpesvirus. Cold Spring Harb Symp Quant Biol, 2006, 71: 357–364.

    Article  PubMed  CAS  Google Scholar 

  20. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010, 11: 597–610.

    PubMed  CAS  Google Scholar 

  21. Esquela-Kerscher A, Slack FJ. Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer, 2006, 6: 259–269.

    Article  PubMed  CAS  Google Scholar 

  22. Liu J, Zheng M, Tang YL, et al. MicroRNAs, an active and versatile group in cancers. Int J Oral Sci, 2011, 3: 165–175.

    Article  PubMed  Google Scholar 

  23. Li Y, Zhao S, Zhen Y, et al. A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol, 2011, 28: 209–214.

    Article  PubMed  Google Scholar 

  24. Chaudhry MA, Sachdeva H, Omaruddin OA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol, 2010, 29: 553–561.

    Article  PubMed  CAS  Google Scholar 

  25. Cha HJ, Shin S, Yoo H, et al. Identification of ionizing radiation-responsive microRNAs in the IM9 human B lymphoblastic cell line. Int J Oncol, 2009, 34: 1661–1668.

    PubMed  CAS  Google Scholar 

  26. Shin S, Cha HJ, Lee EM, et al. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol, 2009, 35: 81–86.

    PubMed  CAS  Google Scholar 

  27. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature, 2005, 435: 834–838.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet, 2007, 39: 673–677.

    Article  PubMed  CAS  Google Scholar 

  29. Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and -145 in colon cancer. DNA Cell Biol, 2007, 26: 311–320.

    Article  PubMed  CAS  Google Scholar 

  30. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res, 2006, 66: 7390–7394.

    Article  PubMed  CAS  Google Scholar 

  31. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 2006, 103: 2257–2261.

    Article  PubMed  CAS  Google Scholar 

  32. Liu C, Li B, Cheng Y, et al. MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3. Int J Biol Sci, 2011, 7: 347–363.

    Article  PubMed  CAS  Google Scholar 

  33. Li B, Shi XB, Nori D, et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate, 2011, 71: 567–574.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y, Huang JW, Li M, et al. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res, 2011, 9: 1100–1111.

    Article  PubMed  CAS  Google Scholar 

  35. Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA, 2006, 103: 12481–12486.

    Article  PubMed  CAS  Google Scholar 

  36. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell, 2008, 13: 272–286.

    Article  PubMed  CAS  Google Scholar 

  37. Nudelman AS, DiRocco DP, Lambert TJ, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus, 2010, 20: 492–498.

    PubMed  CAS  Google Scholar 

  38. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858–862.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120: 635–647.

    Article  PubMed  CAS  Google Scholar 

  40. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004, 64: 3753–3756.

    Article  PubMed  CAS  Google Scholar 

  41. Oh JS, Kim JJ, Byun JY, et al. Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys, 2010, 76: 5–8.

    Article  PubMed  CAS  Google Scholar 

  42. Arora H, Qureshi R, Jin S, et al. MiR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Exp Mol Med, 2011, 43: 298–304.

    Article  PubMed  CAS  Google Scholar 

  43. Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep, 2010, 23: 997–1003.

    PubMed  CAS  Google Scholar 

  44. Zhang CZ, Han L, Zhang AL, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer, 2010, 10: 367.

    Article  CAS  Google Scholar 

  45. Wang XC, Du LQ, Tian LL, et al. Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of nonsmall cell lung cancer. Lung Cancer, 2011, 72: 92–99.

    Article  PubMed  Google Scholar 

  46. Jiang P, Rao EY, Meng N, et al. MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiat Oncol, 2010, 5: 100.

    Article  PubMed  Google Scholar 

  47. Lee KM, Choi EJ, Kim IA. MicroRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol, 2011, 101: 171–176.

    Article  PubMed  CAS  Google Scholar 

  48. Zheng ZF, Su HF, Zou Y, et al. Expression profiles of microRNAs in radioresistant esophageal cell line. Nat Med J China (Chinese), 2011, 91: 639–642.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ximing Xu or Yanrong Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Xu, X. & Hao, Y. Research of the relationship between radiotherapy and microRNAs. Chin. -Ger. J. Clin. Oncol. 11, 285–289 (2012). https://doi.org/10.1007/s10330-012-0972-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-012-0972-2

Key words

Navigation