Skip to main content
Log in

The effects of CYP1A1 gene polymorphism and p16 gene methylation on the risk of lung cancer in a Chinese population

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

Objective

To investigate the relationship between the genetic polymorphism of CYP1A1 and the genetic susceptibility to lung cancer as well as to study the effects of the methylation in p16 gene on the risk of lung cancer in a Chinese population.

Methods

A case control study was conducted among 47 cases of lung cancer and 94 controls. The genetic polymorphism of CYP1A1 was tested with method of PCR-RFLP, and a methylation-specific PCR (MSP) was performed to detect p16 methylation.

Results

It showed that there was no significant difference in frequencies of the genotypes of CYP1A1 between the two groups (P > 0.05). Synergistic effects were not found between smoking and CYP1A1. Methylated p16 gene was found in 44.7% (21/47) of lung cancer tissues and in 17.0% (8/47) of normal lung tissues with significant difference (P < 0.05).

Conclusion

The genetic polymorphism of CYP1A1 does not increase the risk of lung cancer in a Chinese population. The methylation in p16 gene may be the most common mechanism to inactivate p16 gene in lung cancer, and is not significantly associated with genotype of CYP1A1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiyohara C, Shirakawa T, Hopkin JM. Genetic polymorphism of enzymes involved in xenobiotics metabolism and the risk of lung cancer. Environ Health Prevent Med, 2002, 7: 47–59.

    Article  CAS  Google Scholar 

  2. Ingelman-Sundberg M, Oscarson M, Daly AK, et al. Human cytochrome P450 (CYP) genes: a web page for the nomenclature of alleles. Cancer Epidemiol Biomarkers Prev, 2001, 10: 1307–1308.

    PubMed  CAS  Google Scholar 

  3. Kiyohara C, Nakanishi Y, Inutsuka S, et al. The relationship between CYP1A1 and aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population. Pharmacogenetics, 1998, 8: 315–323.

    Article  PubMed  CAS  Google Scholar 

  4. Song N, Tan W, Xing D, et al. CYP1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis, 2001, 22: 11–16.

    Article  PubMed  CAS  Google Scholar 

  5. Petersen DD, McKinney CE, Ikeya K, et al. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am J Hum Genet, 1991, 48: 720–725.

    PubMed  CAS  Google Scholar 

  6. Landi MT, Bertazzi PA, Shields PG, et al. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics, 1994, 4: 242–246.

    Article  PubMed  CAS  Google Scholar 

  7. Garte S, Boffetta P, Caporaso N, et al. Metabolic gene allele nomenclature. Cancer Epidemiol Biomarkers Prev, 2001, 10: 1305–1306.

    PubMed  CAS  Google Scholar 

  8. Tefre T, Ryberg D, Haugen A, et al. Human CYP1A1 (cytochrome P(1)450) gene: lack of association between the MspI restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population. Pharmacogenetics, 1991, 1: 20–25.

    Article  PubMed  CAS  Google Scholar 

  9. Taioli E, Ford J, Trachman J, et al. Lung cancer risk and CYP1A1 genotype in African Americans. Carcinogenesis, 1998, 19: 813–817.

    Article  PubMed  CAS  Google Scholar 

  10. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264: 436–440.

    Article  PubMed  CAS  Google Scholar 

  11. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA, 1998, 95: 11891–11896.

    Article  PubMed  CAS  Google Scholar 

  12. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 1988, 16: 1215.

    Article  PubMed  CAS  Google Scholar 

  13. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996, 93: 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  14. Xue KX, Xu L, Chen SQ, et al. Polymorphisms of the CYP1A1 and GSTM1 genes and their combined effects on individual susceptibility to lung cancer in a Chinese population. Chin J Med Genet (Chinese), 2001, 18: 125–127.

    CAS  Google Scholar 

  15. Li WY, Lai BT, Zhan XP. The relationship between genetic polymorphism of metabolizing enzymes and the genetic susceptibility to lung cancer. Chin J Epidemiol (Chinese), 2004, 25: 1042–1045.

    Google Scholar 

  16. Wang BG, Chen SD, Zhou WP, et al. A case control study on the impact of CYP450 MSPI and GST-M1 polymorphisms on the risk lung cancer. Chin J Oncol (Chinese), 2004, 26: 93–97.

    CAS  Google Scholar 

  17. Sobti RC, Sharma S, Joshi A, et al. Genetic polymorphism of the CYP1A1, CYP2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north Indian population. Mol Cell Biochem, 2004, 266: 1–9.

    Article  PubMed  CAS  Google Scholar 

  18. Sugimura H, Hamada GS, Suzuki I, et al. CYP1A1 and CYP2E1 polymorphism and lung cancer, case-control study in Rio de Janeiro, Brazil. Pharmacogenetics, 1995, 5: S145–S148.

    Article  PubMed  Google Scholar 

  19. Nakachi K, Imai K, Hayashi S, et al. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res, 1993, 53: 2994–2999.

    PubMed  CAS  Google Scholar 

  20. Lin P, Wang SL, Wang HJ, et al. Association of CYP1A1 and microsomal epoxide hydrolase polymorphisms with lung squamous cell carcinoma. Br J Cancer, 2000, 82: 852–857.

    Article  PubMed  CAS  Google Scholar 

  21. Sreeja L, Syamala V, Hariharan S, et al. Possible risk modification by CYP1A1, GSTM1 and GSTT1 gene polymorphisms in lung cancer susceptibility in a South Indian population. J Hum Genet, 2005, 50: 618–627.

    Article  PubMed  CAS  Google Scholar 

  22. Shields PG, Caporaso NE, Falk RT, et al. Lung cancer, race and a CYP1A1 genetic polymorphism. Cancer Epidemiol Biomarkers Prev, 1993, 2: 481–485.

    PubMed  CAS  Google Scholar 

  23. Mooney LA, Bell DA, Santella RM, et al. Contribution of genetic and nutritional factors to DNA damage in heavy smokers. Carcinogenesis, 1997, 18: 503–509.

    Article  PubMed  CAS  Google Scholar 

  24. Dialyna IA, Miyakis S, Georgatou N, et al. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol Rep, 2003, 10: 1829–1835.

    PubMed  CAS  Google Scholar 

  25. Le Marchand L, Sivaraman L, Pierce L, et al. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res, 1998, 58: 4858–4863.

    PubMed  Google Scholar 

  26. Xu X, Kelsey KT, Wiencke JK, et al. Cytochrome P450 CYP1A1 MspI polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev, 1996, 5: 687–692.

    PubMed  CAS  Google Scholar 

  27. Taioli E, Gaspari L, Benhamou S, et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol, 2003, 32: 60–63.

    Article  PubMed  CAS  Google Scholar 

  28. Vineis P, Veglia F, Anttila S, et al. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene-gene interactions. Biomarkers, 2004, 9: 298–305.

    Article  PubMed  CAS  Google Scholar 

  29. Quiñones L, Lucas D, Godoy J, et al. CYP1A1, CYP2E1 and GSTM1 genetic polymorphisms. The effect of single and combined genotypes on lung cancer susceptibility in Chilean people. Cancer Lett, 2001, 174: 35–44.

    Article  PubMed  Google Scholar 

  30. Vineis P, Veglia F, Benhamou S, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int J Cancer, 2003, 104: 650–657.

    Article  PubMed  CAS  Google Scholar 

  31. Alexandrie AK, Nyberg F, Warholm M, et al. Influence of CYP1A1, GSTM1, GSTT1, and NQO1 genotypes and cumulative smoking dose on lung cancer risk in a Swedish population. Cancer Epidemiol Biomarkers Prev, 2004, 13: 908–914.

    PubMed  CAS  Google Scholar 

  32. Sobti RC, Sharma S, Joshi A, et al. CYP1A1 and CYP2D6 polymorphism and risk of lung cancer in a North Indian population. Biomarkers, 2003, 8: 415–428.

    Article  PubMed  CAS  Google Scholar 

  33. Hung RJ, Boffetta P, Brockmöller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis, 2003, 24: 875–882.

    Article  PubMed  CAS  Google Scholar 

  34. Nakachi K, Imai K, Hayashi S, et al. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res, 1991, 51: 5177–5180.

    PubMed  CAS  Google Scholar 

  35. Ishibe N, Wiencke JK, Zuo ZF, et al. Susceptibility to lung cancer in light smokers associated with CYP1A1 polymorphisms in Mexicanand African-Americans. Cancer Epidemiol Biomarkers Prev, 1997, 6: 1075–1080.

    PubMed  CAS  Google Scholar 

  36. Wrensch MR, Miike R, Sison JD, et al. CYP1A1 variants and smoking-related lung cancer in San Francisco Bay area Latinos and African Americans. Int J Cancer, 2005, 113: 141–147.

    Article  PubMed  CAS  Google Scholar 

  37. Schabath MB, Hernandez LM, Wu X, et al. Dietary phytoestrogens and lung cancer risk. JAMA, 2005, 294: 1493–1504.

    Article  PubMed  CAS  Google Scholar 

  38. An Q, Dong XY, Zhang JJ, et al. Studies on inactivation of pl6/CDKN2 gene in non-small cell lung cancer. Chin J Cancer (Chinese), 2001, 20: 591–594.

    Google Scholar 

  39. Seike M, Gemma A, Hosoya Y, et al. Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clin Cancer Res, 2000, 6: 4307–4313.

    PubMed  CAS  Google Scholar 

  40. Kim DH, Nelson HH, Wiencke JK, et al. p16(INK4a) and histologyspecific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res, 2001, 61: 3419–3424.

    PubMed  CAS  Google Scholar 

  41. Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther, 2001, 1: 61–67.

    PubMed  CAS  Google Scholar 

  42. Zöchbauer-Müller S, Fong KM, Virmani AK, et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res, 2001, 61: 249–255.

    PubMed  Google Scholar 

  43. Yanagawa N, Tamura G, Oizumi H, et al. Promoter hypermethylation of tumor suppressor and tumor-related genes in non-small cell lung cancers. Cancer Sci, 2003, 94: 589–592.

    Article  PubMed  CAS  Google Scholar 

  44. Yanagawa N, Tamura G, Oizumi H, et al. Frequent epigenetic silencing of the p16 gene in non-small cell lung cancers of tobacco smokers. Jpn J Cancer Res, 2002, 93: 1107–1113.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhu Tao.

Additional information

Supported by a grant from the National Natural Sciences Foundation of China (No. 30471427).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, W., Jin, Y., Yu, Z. et al. The effects of CYP1A1 gene polymorphism and p16 gene methylation on the risk of lung cancer in a Chinese population. Chinese German J Clin Oncol 6, 350–356 (2007). https://doi.org/10.1007/s10330-007-0005-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-007-0005-8

Key words

Navigation