Skip to main content

Advertisement

Log in

Identification of the TuNI gene causing systemic necrosis in Arabidopsis ecotype Ler infected with Turnip mosaic virus and characterization of its expression

  • Host Responses
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

We previously observed that Turnip mosaic virus (TuMV) induces systemic necrosis in Arabidopsis ecotype Ler but not in Col-0. Sharing most of the common features of the hypersensitive reaction, this systemic necrosis has been found to be a result of a gene-for-gene interaction between the host TuNI gene and viral P3 gene. We here analyzed the TuNI locus in detail and identified three very similar candidates for TuNI gene(s). Our functional and expression analyses using transgenic plants expressing each of the candidates and a protoplast transient expression assay suggested that the expression of the best candidate, named RGX, is responsible for the systemic necrosis although concomitant expression with the other two candidates may be necessary. To understand the expression profile of RGX, we analyzed promoter activity by producing transgenic Col-0 plants that express the reporter GFP gene under the control of the 500–1400-bp upstream regions of RGX. The transgenic plants reproduced the expression patterns of RGX; GFP expression increased after TuMV infection but decreased in the shade treatment. The expression of two other candidates was also upregulated by TuMV infection, suggesting that transcriptional activation of the TuNI candidate genes has a role in controlling TuMV-mediated systemic necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I (2009) Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. Mol Plant Microbe Interact 22:166–175

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  CAS  PubMed  Google Scholar 

  • Chandra-Shekara AC, Gupte M, Navarre D, Raina S, Raina R, Klessig D, Kachroo P (2006) Light-dependent hypersensitive response and resistance signaling against Turnip crinkle virus in Arabidopsis. Plant J 45:320–334

    Article  CAS  PubMed  Google Scholar 

  • Duque P (2011) A role for SR proteins in plant stress responses. Plant Signal Behav 6:49–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J. 18:67–75

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C (2007) Characterization of silencing suppressor 2b of Cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48:1050–1060

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Guo R (2007) Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice. J Genet Genomics 34:247–257

    Article  CAS  PubMed  Google Scholar 

  • Haque A, Sasaki N, Kanegae H, Mimori S, Gao JS, Nyunoya H (2008) Identification of a Tobacco mosaic virus elicitor-responsive sequence in the resistance gene N. Physiol Mol Plant Pathol 73:101–108

    Article  CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  • Inaba J, Kim BM, Shimura H, Masuta C (2011) Virus-induced necrosis is a consequence of direct protein–protein interaction between a viral RNA-silencing suppressor and a host catalase. Plant Physiol 156:2026–2036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenner CE, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784

    Article  CAS  PubMed  Google Scholar 

  • Jeong RD, Chandra-Shekara AC, Kachroo A, Klessig DF, Kachroo P (2008) HRT-mediated hypersensitive response and resistance to Turnip crinkle virus in Arabidopsis does not require the function of TIP, the presumed guardee protein. Mol Plant Microbe Interact 21:1316–1324

    Article  CAS  PubMed  Google Scholar 

  • Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JWS (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko YH, Inukai T, Suehiro N, Natsuaki T, Masuta C (2004) Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by Turnip mosaic virus infection in Arabidopsis thaliana. Theor Appl Genet 110:33–40

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Kato H, Shida T, Saito T, Komeda Y (2009) Evolutionary process of the genomic sequence around the 100 map unit of chromosome 1 in Arabidopsis thaliana. J Plant Biol 52:616–624

    Article  CAS  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278:19406–19415

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Masuta C, Matsuura H, Takahashi H, Inukai T (2008) Veinal necrosis induced by Turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol Plant Microbe Interact 21:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kwon SI, Saha D, Anyanwu NC, Gassmann W (2009) Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1. Plant Physiol 150:1723–1732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BM, Suehiro N, Natsuaki T, Inukai T, Masuta C (2010) The P3 protein of Turnip mosaic virus can alone induce hypersensitive response-like cell death in Arabidopsis thaliana carrying TuNI. Mol Plant Microbe Interact 23:144–152

    Article  CAS  PubMed  Google Scholar 

  • Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of Tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808

    Article  PubMed  Google Scholar 

  • Kobayashi M, Ishihama N, Yoshioka H, Takabatake R, Tsuda S, Seo S, Ohashi Y, Mitsuhara I (2010) Analyses of the cis-regulatory regions responsible for the transcriptional activation of the N resistance gene by Tobacco mosaic virus. J Phytopathol 158:826–828

    Article  CAS  Google Scholar 

  • Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Okano Y, Kagiwada S, Namba S (2010) Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol Plant Microbe Interact 23:283–293

    Article  CAS  PubMed  Google Scholar 

  • Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols Methods in Molecular Biology, vol 323. Humana Press, Totowa, pp 225–229

    Chapter  Google Scholar 

  • Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100:189–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mastrangelo AM, Marone D, Laidò G, De Leonardis AM, De Vita P (2012) Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity. Plant Sci 185:40–49

    Article  PubMed  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    Article  CAS  PubMed  Google Scholar 

  • Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS–LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22:3461–3473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pacheco R, García-Marcos A, Manzano A, de Lacoba MG, Camañes G, García-Agustín P, Díaz-Ruíz JR, Tenllado F (2012) Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol Plant Microbe Interact 25:709–723

    Article  CAS  PubMed  Google Scholar 

  • Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takabatake R, Seo S, Mitsuhara I, Tsuda S, Ohashi Y (2006) Accumulation of the two transcripts of the N gene, conferring resistance to Tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death. Plant Cell Physiol 47:254–261

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C (2012) RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV (Y) following degradation of RCY1. Mol Plant Microbe Interact 25:1171–1185

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the Tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Zeier J, Pink B, Mueller MJ, Berger S (2004) Light conditions influence specific defence responses in incompatible plant–pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673–683

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Dorey S, Swiderski M, Jones JDG (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Lin S, Zhang Q, Lei Y, Zhang Z (2009) Functional analysis of 5′ untranslated region of a TIR-NBS-encoding gene from triploid white poplar. Mol Genet Genomics 282:381–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Atsushi Kato for providing information on the TuNI locus in Ler. This work was partly supported by Grants in Aid for Scientific Research (C) 1758001 and (B) 24380025 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Inukai.

Additional information

J. Liu and B. M. Kim equally contributed to this work.

The nucleotide sequence data reported is available in the DDBJ database under accession number LC010226.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Kim, B.M., Kaneko, Yh. et al. Identification of the TuNI gene causing systemic necrosis in Arabidopsis ecotype Ler infected with Turnip mosaic virus and characterization of its expression. J Gen Plant Pathol 81, 180–191 (2015). https://doi.org/10.1007/s10327-015-0583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-015-0583-1

Keywords

Navigation