Skip to main content
Log in

Analysis of selected singleton transposable elements (SSTEs) and their application for the development of land PATE markers in Magnaporthe oryzae

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are distributed throughout the genome and play an important role in genome variation of the rice blast fungus, Magnaporthe oryzae. TE-associated molecular markers have been developed and used extensively for diversity analysis in natural populations. Here, we investigated the genomic distribution of a selected group of TEs that are dispersed as singletons, and each is of a size feasible for PCR validation, designated as SSTEs, in the genome of the reference laboratory strain, 70-15. The 75 SSTEs identified were distributed evenly on seven chromosomes of the M. oryzae genome. Approximately 40 % of SSTEs were located either in the coding or promoter regions of the predicted genes. The presence or absence of each SSTE at the respective locus was assessed, resolving significant presence/absence polymorphism among 11 rice blast strains collected from different locations worldwide. The presence/absence (P/A) polymorphism of SSTEs in different strains suggests that they may be useful for developing map-based land PATE markers for genetic analysis in M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Chadha S, Gopalakrishna T (2005) Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome 48:943–945

    Article  PubMed  CAS  Google Scholar 

  • Chadha S, Gopalakrishna T (2007) Comparative assessment of REMAP and ISSR marker assays for genetic polymorphism studies in Magnaporthe grisea. Curr Sci 93:688–692

    CAS  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H et al (2011) Multiple translocation of the Avr-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7:e1002147

    Article  PubMed  CAS  Google Scholar 

  • Correll JC, Harp TL, Guerber JC, Zeigler RS, Liu B, Cartwright RD, Lee FN (2000) Characterization of Pyricularia grisea in the United States using independent genetic and molecular markers. Phytopathology 90:1396–1404

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • Farman ML, Taura S, Leong SA (1996a) The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3′ end of an inverted repeat transposon. Mol Gen Genet 251:675–681

    PubMed  CAS  Google Scholar 

  • Farman ML, Tosa Y, Nitta N, Leong SA (1996b) MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe girsea. Mol Gen Genet 251:665–674

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  PubMed  CAS  Google Scholar 

  • George MLC, Nelson RJ, Zeigler RS, Leung H (1998) Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88:223–229

    Article  PubMed  CAS  Google Scholar 

  • Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG (1989) Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci USA 86:9981–9985

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Ando I, Imbe T (1998) Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi. Phytopathology 88:822–827

    Article  PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Gowda M, Haller K, Hatfield J, Lu G, Stahlberg E, Zhou B, Li H, Kim H, Yu Y et al (2005) Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol 138:105–115

    Article  PubMed  Google Scholar 

  • Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564

    PubMed  CAS  Google Scholar 

  • Kachroo P, Leong SA, Chattoo BB (1994) Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea. Mol Gen Genet 245:339–348

    Article  PubMed  CAS  Google Scholar 

  • Kachroo P, Leong SA, Chattoo BB (1995) Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc Natl Acad Sci USA 92:11125–11129

    Article  PubMed  CAS  Google Scholar 

  • Kang S (2001) Organization and distribution pattern of MGLR-3, a novel retrotransposon in the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 32:11–19

    Article  PubMed  CAS  Google Scholar 

  • Kito H, Takahashi Y, Sato J, Fukiya S, Sone T, Tomita F (2003) Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr Genet 42:322–331

    Article  PubMed  CAS  Google Scholar 

  • Lau GW, Chao CT, Ellingboe AH (1993) Interaction of genes controlling avirulence/virulence of Magnaporthe grisea on rice cultivar Katy. Phytopathology 83:375–382

    Article  Google Scholar 

  • Leung H, Borromeo ES, Bernardo MA, Notteghem JL (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78:1227–1233

    Article  Google Scholar 

  • Levy M, Romao J, Marchetti MA, Hamer JE (1991) DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3:95–102

    PubMed  CAS  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H et al (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420

    Article  PubMed  CAS  Google Scholar 

  • Li P, Bai B, Zhang HY, Zhou H, Zhou B (2012) Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. J Zhejiang Univ Sci B 13:452–464

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, Takeda J, Horie K, Olson WK, Hackett PB (2005) Target-site preference for Sleeping Beauty transposons. J Mol Biol 346:161–173

    Article  PubMed  CAS  Google Scholar 

  • Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T et al (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5:e1000549

    Article  PubMed  Google Scholar 

  • Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y, Mayama S (2001) Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 29:4106–4113

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Li Y, Stein L (2005) Site preferences of insertional mutagenesis agents in Arabidopsis. Plant Physiol 137:168–175

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Milgroom MG, Han SS, Kang S, Lee YH (2003) Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology 93:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M (2006) Organization of chromosome ends in the rice blast fungus Magnaporthe oryzae. Nucleic Acids Res 34:4685–4701

    Article  PubMed  CAS  Google Scholar 

  • Sanchez E Jr, Asano K, Sone T (2011) Characterization of Inago1 and Inago2 retrotransposons in Magnaporthe oryzae. J Gen Plant Pathol 77:239–242

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thon MR, Martin SL, Goff S, Wing RA, Dean RA (2004) BAC end sequences and a physical map reveal transposable element content and clustering pattern in the genome of Magnaporthe grisea. Fungal Genet Biol 41:657–666

    Article  PubMed  CAS  Google Scholar 

  • Thon MR, Pan H, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA (2006) The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol 7:R16

    Article  PubMed  Google Scholar 

  • Tosa Y, Uddin W, Viji G, Kang S, Mayama S (2007) Comparative genetic analysis of Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass turf in the United States and Japan. Plant Dis 91:517–524

    Article  CAS  Google Scholar 

  • Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, Zhao W, Shen M, Zhang H, Li C et al (2012) Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 8:e1002869

    Article  PubMed  Google Scholar 

  • Zeigler RS, Cuoc LX, Scott RP, Bernardo MA, Chen DH, Valent B, Nelson RJ (1995) The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology 85:443–451

    Article  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Jong-Seong Jeon at the Kyung Hee University, Korea, Guo-Liang Wang at the Ohio State University, USA, Yulin Jia at USDA-ARS Dale Bumpers National Rice Research Center, USA, and Chenyun Li at Yunnan Agriculture University, China, for providing the strains listed in Tables 1 and S4. We thank Mr. Neal Rasmi for a grammatical review of this manuscript. This project was supported by grants from Natural Science Foundation in China (30971878), Open Project of State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2010DS700124-KF1108) and partial funding from the Faculty of Science and the Graduate School, Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 76 kb)

Supplementary material 2 (DOC 45 kb)

Supplementary material 3 (DOC 160 kb)

Supplementary material 4 (DOC 186 kb)

10327_2013_428_MOESM5_ESM.ppt

Fig. S1. Chromosomal distribution of SSTEs. The supercontigs indicated in grey bars were aligned on each chromosome in the same order as the one in the integrated map of M. grisea (http://www.broadinstitute.org/annotation/genome/magnaporthe_grisea/maps/ViewMap.html?sp=0http://www.broadinstitute.org/annotation/genome/magnaporthe_grisea/maps/ViewMap.html?sp=0). The SSTEs corresponding to the PATE loci are indicated by lines with different abbreviated names. Abbreviated name for each SSTE family: Mg-SINE = MS; Pot2-A = P2A; Pot2-B = P2B; Pot3 = P3; MINE = MN; solo-LTR = SR; Occan = ON; MGL = ML. The location of SSTE in each supercontig is listed in Table 2. The expected size of PCR product at each PATE locus is listed in Table 4. The map was drawn to scale. (PPT 672 kb)

10327_2013_428_MOESM6_ESM.ppt

Fig. S2. Cladistic analyses of Mg-SINE (A) and Pot2 (B) elements used in this study. The nucleotide sequences of TEs were used for multiple sequence alignments in the program Clustal_X 1.81 (Thompson et al. 1997). The derived phylogenetic tree was viewed with the program Njplot (Perrière and Gouy 1996). (PPT 116 kb)

10327_2013_428_MOESM7_ESM.ppt

Fig. S3. Multiple sequence alignments of Pot2 elements. Two loci, 6-194-M10 and 3-191-M1, were used as representatives for Pot2-A and Pot2-B elements, respectively. Locus 6-169-M3 is a chimera of Pot2-A and -B. (A). Nucleotide sequences of these three Pot2 elements were used for the multiple sequence alignment. The terminal inverted repeat (TIR) sequences are indicated by the upper lines at both termini. (B). Amino-acid sequences of these three Pot2 elements used for the multiple sequence alignment. The central DDE domain is indicated by line above sequences. (PPT 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hy., He, Dy., Kasetsomboon, T. et al. Analysis of selected singleton transposable elements (SSTEs) and their application for the development of land PATE markers in Magnaporthe oryzae . J Gen Plant Pathol 79, 96–104 (2013). https://doi.org/10.1007/s10327-013-0428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-013-0428-8

Keywords

Navigation