Skip to main content
Log in

Is zinniol a true phytotoxin? Evaluation of its activity at the cellular level against Tagetes erecta

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Zinniol, a non-host selective phytotoxin commonly produced by fungi of the Alternaria genus, has been reported as the metabolite responsible for the phytotoxicity of the lipophilic fraction of A. tagetica. While both the lipophilic fraction and zinniol have been shown to produce necrosis on leaves of susceptible marigold (Tagetes erecta) plants, the true role of zinniol in the infectious process remains uncertain. Using marigold cell cultures as a model, we evaluated the effects of zinniol and the lipophilic fraction at the cellular level and showed that pure zinniol is not markedly phytotoxic at concentrations known to induce necrosis in leaves of T. erecta. Moreover, the effects of zinniol on cell membranes and DNA fragmentation are less intense than those caused by the lipophilic fraction. These results suggest that zinniol may not play a significant role in the A. tageticaT. erecta interaction and, consequently, its classification as a non-host selective phytotoxin is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barash I, Mor H, Netzer D, Kashman Y (1981) Production of zinniol by Alternaria dauci and its phytotoxic effect on carrot. Physiol Plant Pathol 19:7–16

    CAS  Google Scholar 

  • Chen H, Mirocha C, Xie W, Hogge L, Olson D (1992) Production of the mycotoxin fumonisin B1 by Alternaria alternata f. sp. lycopersici. Appl Environ Microbiol 58:3928–3931

    CAS  PubMed  Google Scholar 

  • Cotty PJ, Misaghi IJ (1984) Zinniol production by Alternaria species. Phytopathology 74:785–788

    Article  CAS  Google Scholar 

  • Cotty PJ, Misaghi IJ, Hine RB (1983) Production of zinniol by Alternaria tagetica and its phytotoxic affect on Tagetes erecta. Phytopathology 73:1326–1328

    Article  CAS  Google Scholar 

  • Dangl J, Dietrich R, Richberg M (1996) Death don’t have no mercy: cell death programs in plant–microbe interactions. Plant Cell 8:1793–1807

    Article  CAS  PubMed  Google Scholar 

  • Deighton N, Muckenschnabel I, Goodman BA, Willianson B (1999) Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant J 20:485–492

    Article  CAS  PubMed  Google Scholar 

  • Durbin RD (ed) (1981) Toxins in plant disease. Academic Press, New York

  • Duval I, Brochu V, Simard M, Beaulieu C, Beaudoin N (2005) Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta 222:820–831

    Article  CAS  PubMed  Google Scholar 

  • Erdelmeier I, Gérard-Monnier D, Yadan J, Chaudière J (1998) Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Escobedo Gracia-Medrano RM, Miranda-Ham ML (2003) Analysis of elicitor-induced cell viability changes in Lycopersicon esculentum Mill. suspension cultures by different methods. In Vitro Cell Dev Biol Plant 39:236–239

    Article  Google Scholar 

  • Gamboa-Angulo M, Alejos-González F, Escalante-Erosa F, García-Sosa K, Delgado-Lamas G, Peña-Rodríguez LM (2000) Novel dimeric metabolites from Alternaria tagetica. J Nat Prod 63:1117–1120

    Article  CAS  PubMed  Google Scholar 

  • Gamboa-Angulo M, Escalante-Erosa F, García-Sosa K, Alejos-González F, Delgado-Lamas G, Peña-Rodríguez LM (2001) Tagetolone and tagetenolone: two phytotoxic polyketides from Alternaria tagetica. J Agric Food Chem 49:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Gamboa-Angulo M, Escalante-Erosa F, García-Sosa K, Alejos-González F, Delgado-Lamas G, Peña-Rodríguez LM (2002) Natural zinniol derivates from Alternaria tagetica. Isolation, synthesis, and structure–activity correlation. J Agric Food Chem 50:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist D (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    Article  CAS  PubMed  Google Scholar 

  • Heiser I, Oßwald W, Elstner EF (1998) The formation of reactive oxygen species by fungal and bacterial phytotoxins. Plant Physiol Biochem 36:703–713

    Article  CAS  Google Scholar 

  • Hotchkiss ES, Baxter LW Jr (1983) Pathogenicity of Alternaria tagetica on Tagetes. Plant Dis 67:1288–1290

    Article  Google Scholar 

  • Huang JS (2001) Plant pathogenesis and resistance. Kluwer, Boston

    Google Scholar 

  • Ichihara A, Tazaki H, Sakamura S (1985) The structure of zinnolide, a new phytotoxin from Alternaria solani. Agric Biol Chem 49:2811–2812

    CAS  Google Scholar 

  • Knoche H, Duvick J (1987) The role of fungal toxins in plant disease. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Symposium of the British Mycological Society. Cambridge University Press, Cambridge, pp 158–192

    Google Scholar 

  • Malerba M, Cerana R, Crosti P (2003) Fusicoccin induces in plant cells a programmed cell death showing apoptotic features. Protoplasma 222:113–116

    Article  CAS  PubMed  Google Scholar 

  • Marré MT, Amicucci E, Zingarelle L, Albergon F, Marré E (1998) The respiratory burst and electrolyte leakage induced by sulfhydryl blockers in Egeria densa leaves are associated with H2O2 production and are dependent on Ca2+ influx. Plant Physiol 118:1379–1387

    Article  PubMed  Google Scholar 

  • Morales L (2003) Cuantificación de zinniol, tyrosol y ácido p-hidroxibenzoico en cultivos de Alternaria tagetica (in Spanish). B.Sc. thesis, Universidad Autónoma de Yucatán, Mérida, Yucatán, México

  • Navarre DA, Wolpert TJ (1999) Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11:237–249

    Article  CAS  PubMed  Google Scholar 

  • Paciolla C, Dipierro N, Mulè G, Logrieco A, Dipierro S (2004) The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. Physiol Mol Plant Pathol 65:49–56

    Article  CAS  Google Scholar 

  • Panigrahi S (1997) Alternaria toxins. In: Felix D’Mello JP (ed) Handbook of plant and fungal toxicants. CRC Press, Boca Ratón, pp 319–336

    Google Scholar 

  • Qui JA, Castro-Concha LA, García-Sosa K, Peña-Rodríguez LM, Miranda-Ham ML (2009) Differential effects of phytotoxic metabolites from Alternaria tagetica on Tagetes erecta cell cultures. J Gen Plant Pathol 75:331–339

    Article  CAS  Google Scholar 

  • Robert ML, Herrera JL, Contreras F, Scorer KN (1987) In vitro propagation of Agave fourcroydes Lem. (Henequen). Plant Cell Tissue Organ Cult 8:37–48

    Article  CAS  Google Scholar 

  • Rudolph K (1976) Non-specific toxins. In: Heitefuss R, Williams PH (eds) Physiological plant pathology: encyclopedia of plant physiology, new series vol 4. Springer, Berlin, pp 270–315

    Google Scholar 

  • Scheffer R, Livingston R (1984) Role of toxins in evolution and ecology of plant pathogenic fungi. Toxicology 100:17–21

    Google Scholar 

  • Street HE (1977) Cell suspension cultures techniques. In: Street HE (ed) Plant tissue and cell culture. Blackwell, Oxford, pp 61–102

  • Thuleau P, Graziana A, Rossignol M, Kausst H, Auriol P, Ranjeva R (1988) Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc Nat Acad Sci USA 85:5932–5935

    Article  CAS  PubMed  Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li J, Bostock R, Gilchrist DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  CAS  PubMed  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  CAS  PubMed  Google Scholar 

  • Wood R, Ballio A, Graniti A (eds) (1992) Phytotoxins in plant disease. Academic Press, London

  • Yao N, Tada Y, Park P, Nakayashiki H, Tosa Y, Mayama S (2001) Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant J 28:13–26

    Article  CAS  PubMed  Google Scholar 

  • Zhang HK, Zhang X, Mao BZ, Li Q, He ZH (2004) Alpha-picolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Res 14:27–33

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Council of Science and Technology (CONACYT, Mexico) through grant No. 54868 and a doctoral scholarship (183263) to J.Q.-Z. We wish to thank PanAmerican Seed for providing T. erecta seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Peña-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qui, J.A., Castro-Concha, L.A., García-Sosa, K. et al. Is zinniol a true phytotoxin? Evaluation of its activity at the cellular level against Tagetes erecta . J Gen Plant Pathol 76, 94–101 (2010). https://doi.org/10.1007/s10327-010-0222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-010-0222-9

Keywords

Navigation