Skip to main content
Log in

Involvement of mitogen-activated protein kinase in the induction of StrbohC and StrbohD genes in response to pathogen signals in potato

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

The respiratory burst oxidase homolog (rboh), a plant homolog of the catalytic subunit of phagocyte NADPH oxidase (gp91phox), has been implicated in O2 generation. In the previous study, we reported that StrbohA is constitutively expressed at a low level, whereas StrbohB is upregulated after pathogen signals are perceived in potato tubers. To gain a better understanding about the role of rboh in the defense response in potato leaves, we investigated the regulatory mechanisms of the gene. StrbohB gene was activated in response to an avirulent race of Phytophthora infestans or to hyphal wall components (HWC) from the pathogen; however, levels of expression were very low. We isolated two novel rboh cDNAs, StrbohC and StrbohD, by virtue of the sequence information from the tomato whitefly-induced gene 1 (LeWfi1) and tomato TC121349, respectively. The expression of StrbohC and StrbohD was drastically upregulated in the potato leaves inoculated with P. infestans or treated with HWC elicitor. Mitogen-activated protein kinase (MAPK) is known to play a pivotal role in the oxidative burst. The transcript accumulation induced by HWC treatment was blocked by U0126, which is a specific inhibitor of MAPK kinase (MAPKK). Conversely, the StrbohC and StrbohD genes were upregulated, driven by a pathogen-inducible promoter, in transgenic potato leaves that carry a constitutively active mutant of the MAPKK, StMEK1DD, that activates defense-related MAPKs. These results suggest that a MAPK cascade is involved in the process leading to the expression of the StrbohC and StrbohD genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Amicucci E, Gaschler K, Ward JM (1999) NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol 1:524–528

    CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol 90:109–116

    Article  PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Low PS (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272:28274–28280

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Burnett EC, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J Exp Bot 49:1767–1771

    Article  CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Doke N, Tomiyama K (1980) Effect of hyphal wall components from Phytophthora infestans on protoplasts of potato tuber tissues. Physiol Plant Pathol 16:169–176

    Google Scholar 

  • Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack: Mechanism and role as an emergency signal for plant bio-defence―a review. Gene 179:45–51

    Article  PubMed  CAS  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  PubMed  CAS  Google Scholar 

  • Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JDG (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522

    Article  PubMed  CAS  Google Scholar 

  • Hervé C, Tonon T, Collén J, Corre E, Boyen C (2006) NADPH oxidases in eukaryotes: red algae provide new hints! Curr Genet 49:190–204

    Article  PubMed  CAS  Google Scholar 

  • Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18:172–177

    Article  PubMed  CAS  Google Scholar 

  • Katou S, Yamamoto A, Yoshioka H, Kawakita K, Doke N (2003) Functional analysis of potato mitogen-activated protein kinase kinase, StMEK1. J Gen Plant Pathol 69:161–168

    CAS  Google Scholar 

  • Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JDG, Mori H, Doke N (2005) Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol 139:1914–1926

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W (1995) Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol 108:1171–1178

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein Rac is a regulator of cell death in plants. Proc Natl Acad Sci USA 96:10922–10926

    Article  PubMed  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O2 generating activity in potato tuber tissues. J Exp Bot 57:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger RH (1996) EF-hands reach out. Nature Struct Biol 3:12–15

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11:9–12

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lara-Ortíz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255

    Article  PubMed  CAS  Google Scholar 

  • León J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    PubMed  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741

    Article  PubMed  CAS  Google Scholar 

  • Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696–699

    Article  CAS  Google Scholar 

  • Piedras P, Hammond-Kosack KE, Harrison K, Jones JDG (1998) Rapid, Cf-9- and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol Plant-Microbe Interact 11:1155–1166

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Segal AW, West I, Wientjes F, Nugent JHA, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788

    PubMed  CAS  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Article  PubMed  CAS  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Taylor ATS, Kim J, Low PS (2001) Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst. Biochem J 355:795–803

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  PubMed  CAS  Google Scholar 

  • Xing T, Wang XJ, Malik K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol Plant-Microbe Interact 14:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692

    Article  PubMed  CAS  Google Scholar 

  • Yoshie Y, Goto K, Takai R, Iwano M, Takayama S, Isogai A, Che F-S (2005) Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotech 22:127–135

    CAS  Google Scholar 

  • Yoshioka H, Hayakawa Y, Doke N (1995) Suppression of phenylalanine ammonia-lyase mRNA accumulation by suppressors from Phytophthora infestans. Ann Phytopathol Soc Jpn 61:7–12

    CAS  Google Scholar 

  • Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998

    PubMed  CAS  Google Scholar 

  • Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant-Microbe Interact 14:725–736

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We deeply thank Takashi Tsuge of Nagoya University for valuable suggestions; Philip M. Mullineaux and Roger P. Hellens of John Innes Centre for pGreen binary vectors; and Miki Yoshioka, Minako Hirano and Ayako Adachi of Nagoya University for cultivation of plants. The authors also thank the members of the Radioisotope Research Center, Nagoya University for technical assistance. This work was supported in part by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists, by a Grant-in-Aid for Scientific Research (S) (14104004) from the Ministry of Education, Science and Culture of Japan and The 21st Century COE Program from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhito Kawakita.

Additional information

The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB198716 (StrbohC) and AB198717 (StrbohD).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamizo, C., Doke, N., Yoshioka, H. et al. Involvement of mitogen-activated protein kinase in the induction of StrbohC and StrbohD genes in response to pathogen signals in potato. J Gen Plant Pathol 73, 304–313 (2007). https://doi.org/10.1007/s10327-007-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-007-0020-1

Keywords

Navigation