Skip to main content

Advertisement

Log in

Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Antibiotic pollution is a major health issue inducing antibiotic resistance and the inefficiency of actual drugs, thus calling for improved methods to clean water and wastewater. Here we review the recent development of heterojunction photocatalysis and application in degrading tetracycline. We discuss mechanisms for separating photogenerated electron–hole pairs in different heterojunction systems such as traditional, p–n, direct Z-scheme, step-scheme, Schottky, and surface heterojunction. Degradation pathways of tetracycline during photocatalysis are presented. We compare the efficiency of tetracycline removal by various heterojunctions using quantum efficiency, space time yield, and figures of merit. Implications for the treatment of antibiotic-contaminated wastewater are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

source and h+ acceptor. b First-order kinetics of g-C3N4, Cds, TiO2, KCNN, KCNNT, TiO2@CdS, KCNN@CdS and KCNNT@CdS for tetracycline removal under visible light (Reprinted with permission of Elsevier from Liu et al. 2021). c The effects of Bi metal and oxygen vacancies on the carrier transfer: oxygen vacancies acted as intermediate to transfer e to Bi metal. Then, e in Bi metal moved to the conduction band due to SPR effect. d Proposed photocatalytic mechanism of 30% Ag/γ-AgI/Bi2O2CO3/Bi: a novel S-scheme heterojunction mechanism. (Reprinted with permission of Elsevier from Yan et al. 2021a). e, electron; h+, hole; CB, conduction band; VB, valence band; O2 · −, superoxide radical; ·OH hydroxyl radical; KCNN, K doped g-C3N4 nanosheet; KCNNT, K doped g-C3N4 nanosheet-TiO2; Eg, energy gap; SPR, surface plasmon resonance

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CuInS2 :

Copper indium sulfide

g-C3N4 :

Graphitic carbon nitride

In2S3 :

Indium sulfide

InVO4 :

Indium vanadate

BiOI:

Bismuth oxyiodide

BiOX (X = Cl, Br, I):

Bismuth oxyhalides

BiFeO3 :

Bismuth ferrite

TiO2 :

Titanium dioxide

Ag2O:

Silver oxide

Ta3N5 :

Tantalum pentanitride

γ-Fe2O3 :

γ-Ferric oxide

AgI:

Silver iodide

BiVO4 :

Bismuth vanadate

BiOBr:

Bismuth bromide oxide

BiO(CH3COO)1−xBrx :

Bismuth oxide acetate

In2S3 :

Indium trisulfide

Bi2O2CO3 :

Bismuth oxycarbonate

Ti3C2 Mxene:

Titanium carbide MXene

SnNb2O6 :

Tin niobate

Ag:

Silver

Bi3TaO7 :

Bismuth tantalite

g-C3N4 :

Graphitic carbon nitride

CdS:

Cadmium sulfide

γ-AgI:

γ-Silver iodide

Bi:

Bismuth

ZnIn2S4 :

Indium zinc sulfide

BiPO4 :

Bismuth(iii) phosphate

AgBr-TiO2-Pal:

Silver bromide–titanium dioxide–Palygorskite

Bi2O7Sn2-:

Bismuth stannate

Ag2S:

Silver sulfide

BiOBr:

Bismuth oxybromide

Bi2SiO5 :

Bismuth silicate

BiOCl:

Bismuth oxychloride

BiOCOOH:

Bismuth oxyformate

In2.77S4 :

Indium2.77 tetrasulfide

WS2 :

Tungsten sulfide

AgI/WO3 HHNFs:

Silver iodide/tungsten trioxide hollow hierarchical nanoflowers

Ag3PO4 :

Trisilver orthophosphate

CuBi2O4 :

Cupric bismuth

CDs/g-C3N4/MoO3 :

Carbon quantum dots/graphitic carbon nitride/molybdenum trioxide

Bi2WO6 :

Bismuth tungstate

Ta3N5 :

Tantalum nitride

SnFe2O4 :

Stannic ferrite

ZnFe2O4 :

Zinc ferrite

CdIn2S4 :

Cadmium indium sulfide

Ag/CNF:

Silver-loaded fiber-like carbon nitride

Au/Pt/g-C3N4 :

Gold/platinum/graphitic carbon nitride

Ti3C2 MXene:

Titanium carbide MXene

ZnIn2S4 :

Indium zinc sulfide

CoAl-LDH/g-C3N4/RGO:

CoAl-layered double hydroxide/graphitic carbon nitride/reduced graphene oxide

3D PANI/PDI:

Three-dimensional structure Polyaniline/Perylene diimide

Bi2W2O9 :

Bismuth tungstate

PTI hollow tube/ZnO:

Poly(triazine imide) hollow tube/zinc oxide

PVDF:

Poly(vinylidene fluoride)

Bi2Sn2O7-C3N4 :

Bismuth stannate

NiFe2O4 :

Nickel ferrite

SCNNR:

Sulfur-doped carbon nitride nanorod

POPD:

Poly-o-phenylenediamine

CoFe2O4 :

Cobalt ferrite

MIL-125(Ti):

Materials Institute Lavoisier-125 (Ti)

In2S3@:

Indium(III) sulfide

β-Bi2O3 :

β-Bismuth trioxide

MoS2 :

Molybdenum disulfide

CuBi2O4 :

Cupric bismuth

CoO:

Cobalt oxide

Bi2MoO6 :

Bismuth molybdate

Ag6Si2O7 :

Silver silicate

MIL-88B:

Materials Institute Lavoisier-88B

COF-200:

Covalent organic frameworks-200

PANI:

Polyaniline

m-Bi2O4 :

Monoclinic dibismuth tetroxide

BiOCl:

Bismuth oxychloride

CdTe:

Cadmium telluride quantum dots

CuInS2 :

Copper indium sulfide

Eu/B:

Europium/boron

C-g-C3N4 :

Carbon-doped graphitic carbon nitride

C3N5 :

Tricarbon pentanitride

SnS2 :

Tin disulfide

BiOBr:

Bismuth bromide oxide nitride

BiOI:

Bismuth oxyiodide

Bi12O15Cl6 :

Bismuth oxychloride

CO3O4 :

Tricobalt tetraoxide

ZnS:

Zinc sulfide

Cu2O:

Cuprous oxide

Bi2S3 :

Bismuth sulfide

P3HT:

Poly (3-hexylthiophere)

PCN-224:

Porous coordination network-224

BP:

Black phosphorus

S-PCN:

Sulfur-doped porous graphite carbon nitride

WO2.72 :

Tungsten oxide

CdIn2S4 :

Cadmium indium sulfide

Bi3O4Cl:

Bismuth Tetroxide Chloride

Vis:

Visible light

UV:

Ultraviolet light

CdS:

Cadmium sulfide

NIR:

Near infrared light

e :

Electron

h+ :

Hole

H2O2 :

Hydroperoxide

HOO· :

Hydroperoxyl radical

OH· :

Hydroxyl radical

1O2 :

Singlet oxygen

O2 · − :

Superoxide radical

g:

Gram

h:

Hour

L:

Liter

mg:

Milligram

J:

Joule

W:

Watt

References

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82073607), Hunan Provincial Natural Science Foundation of China (2019JJ40399), and Novel coronavirus pneumonia emergency special science and technology plan of Changsha City (kq2001035). In addition, Xinghou He would like to thank Prof. Ping Ding and Dr. Pian Wu of Central South University Xiangya School of Public Health for their selfless help during he studied for bachelor degree in Central South University. Xinghou also want to thank, Xinghua He of Yunna normal university for his assistance in providing original figures for this paper, and love and support from Hongkong Culture Regeneration Research Society over the past years.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianhan Kai or Ping Ding.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Kai, T. & Ding, P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environ Chem Lett 19, 4563–4601 (2021). https://doi.org/10.1007/s10311-021-01295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-021-01295-8

Keywords