Advertisement

Role of microbes, metabolites and effector compounds in host–microbiota interaction: a pharmacological outlook

  • Bharat BhushanEmail author
  • Brij Pal SinghEmail author
  • Kamna Saini
  • Mamta Kumari
  • Sudhir Kumar Tomar
  • Vijendra Mishra
Review

Abstract

Microbial cells react with intestinal surfaces and produce enzymes and metabolites that influence human health, host metabolism and immunity. Gut microbiota and probiotics also influence host physiology. Here, we review 1) the role of host–microbiota composition and microbial enzymes in human well-being and in human metabolism for the degradation of indigestible dietary components; 2) the effects of gut microbiota on drug metabolism; 3) the roles of probiotic composition, metabolites, e.g. vitamins, bacteriocins, acids and bioactive peptides, and effector compounds, e.g. polysaccharides, outer membrane proteins, pili, muropeptides and CpG-rich DNA, for clinical outcomes; and 4) a new perspective of microbial global positioning system (mGPS) for segregation of human disease phenotypes on the basis of their microbiota.

Keywords

Microbiota Probiotics Metabolites Effector molecules Pharmacology Drug metabolism 

Notes

Acknowledgements

This work was the result of two financial grants from Department of Science and Technology (DST), India, for individual research projects to be implemented at BAS department, NIFTEM: (1) BB acknowledges the funding from Science and Engineering Research Board under DST-SERB NPDF scheme (financial sanction # PDF/2018/003949), and (2) MK acknowledges the financial approval from DST-KIRAN division under WOS-A scheme [financial approval # SR/WOS-A/CS-41/2017 (G)].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agustina R, Bovee-Oudenhoven IM, Lukito W, Fahmida U, van de Rest O, Zimmermann MB, Firmansyah A, Wulanti R, Albers R, van den Heuvel EG, Kok FJ (2013) Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1–6 years. J Nutr 143(7):1184–1193.  https://doi.org/10.3945/jn.112.166397 CrossRefGoogle Scholar
  2. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M (2011) Enterotypes of the human gut microbiome. Nature 473:174–180.  https://doi.org/10.1038/nature09944 CrossRefGoogle Scholar
  3. Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavones daidzein: exploring the relevance to human health. Exp Biol Med 230(3):155–170.  https://doi.org/10.1177/15353702052300030 CrossRefGoogle Scholar
  4. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167.  https://doi.org/10.1046/j.1432-1033.2002.03239.x CrossRefGoogle Scholar
  5. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):1507–1519.  https://doi.org/10.1017/S0007114513003875 CrossRefGoogle Scholar
  6. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26.  https://doi.org/10.1038/ja.2005.1 CrossRefGoogle Scholar
  7. Bhushan B, Singh BP, Kumari M, Mishra V, Saini K, Singh D (2019) Microbes, their metabolites, and effector molecules: a pharmacological perspective for host-microbiota interaction. In: Arora D, Sharma C, Jaglan S, Lichtfouse E (eds) Pharmaceuticals from microbes. Environmental chemistry for a sustainable world, vol 28. Springer Nature, Cham, Switzerland, pp 155–206. ISBN 978-3-030-04674-3. https://doi.org/10.1007/978-3-030-04675-0_7
  8. Bhushan B, Tomar SK, Chauhan A (2017) Techno-functional differentiation of two vitamin B 12 producing Lactobacillus plantarum strains: an elucidation for diverse future use. Appl Microbiol Biotechnol 101(2):697–709.  https://doi.org/10.1007/s00253-016-7903-z CrossRefGoogle Scholar
  9. Bhushan B, Tomar SK, Mandal S (2016) Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC. Appl Microbiol Biotechnol 100(15):6791–6803.  https://doi.org/10.1007/s00253-016-7639-9 CrossRefGoogle Scholar
  10. Booijink CC, El-Aidy S, Rajilić-Stojanović M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12(12):3213–3227.  https://doi.org/10.1111/j.1462-2920.2010.02294.x CrossRefGoogle Scholar
  11. Borbet TC, Blaser MJ (2019) Host genotype and early life microbiota alterations have additive effects on disease susceptibility. Mucos Immunol 12(3):586.  https://doi.org/10.1038/s41385-019-0157-1 CrossRefGoogle Scholar
  12. Buddington RK, Sangild PT (2011) Development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J Animal Sci 89:1506–1519.  https://doi.org/10.2527/jas.2010-3705 CrossRefGoogle Scholar
  13. Burgess C, O'Connell-Motherway M, Sybesma W, Hugenholtz J, Van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70(10):5769–5777.  https://doi.org/10.1128/AEM.70.10.5769-5777 CrossRefGoogle Scholar
  14. Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, Jury J, Herran AR, Casqueiro J, Tye-Din JA, Surette MG (2016) Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151(4):670–683.  https://doi.org/10.1053/j.gastro.2016.06.041 CrossRefGoogle Scholar
  15. Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765.  https://doi.org/10.3389/fmicb.2017.01765 CrossRefGoogle Scholar
  16. Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A (2019) Microbial regulation of organismal energy homeostasis. Nat Metabol 1:34–46.  https://doi.org/10.1038/s42255-018-0017-4 CrossRefGoogle Scholar
  17. Cao LT, Wu JQ, Xie F, Hu SH, Mo Y (2007) Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. J Dairy Sci 90(8):3980–3985.  https://doi.org/10.3168/jds.2007-0153 CrossRefGoogle Scholar
  18. Cárdenas N, Laiño JE, Delgado S, Jiménez E, Del Valle MJ, De Giori GS, Sesma F, Mayo B, Fernández L, LeBlanc JG, Rodríguez JM (2015) Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol 99(10):4343–4353.  https://doi.org/10.1007/s00253-015-6429-0 CrossRefGoogle Scholar
  19. Chamlagain B, Edelmann M, Kariluoto S, Ollilainen V, Piironen V (2015) Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices. Food Chem 166:630–638.  https://doi.org/10.1016/j.foodchem.2014.06.068 CrossRefGoogle Scholar
  20. Chang HY, Chen JH, Chang JH, Lin HC, Lin CY, Peng CC (2017) Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: an updated meta-analysis. PLoS ONE 12(2):e0171579.  https://doi.org/10.1371/journal.pone.0171579 CrossRefGoogle Scholar
  21. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111(6):2247–2252.  https://doi.org/10.1073/pnas.1322269111 CrossRefGoogle Scholar
  22. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 1(49):23–28.  https://doi.org/10.1016/j.copbio.2017.07.011 CrossRefGoogle Scholar
  23. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270.  https://doi.org/10.1016/j.cell.2012.01.035 CrossRefGoogle Scholar
  24. Cooperman JM, Lopez R (1991) Riboflavin. In: Machlin LJ (ed) Handbook of vitamins. M. Dekker, New York ISBN 9780824783518Google Scholar
  25. Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, De Vos WM, Ehrlich SD, Fraser CM, Hattori M, Huttenhower C (2018) Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 3:8–16.  https://doi.org/10.1038/s41564-017-0072-8 CrossRefGoogle Scholar
  26. Dahiya DK, Puniya AK (2015) Evaluation of survival, free radical scavenging and human enterocyte adherence potential of lactobacilli with anti-obesity and anti-inflammatory cla isomer-producing attributes. J Food Process Preserv 39:2866–2877.  https://doi.org/10.1111/jfpp.12538 CrossRefGoogle Scholar
  27. Dahiya DK, Puniya AK (2017) Isolation, molecular characterization and screening of indigenous lactobacilli for their abilities to produce bioactive conjugated linoleic acid (CLA). J Food Sci Technol 54(3):792–801.  https://doi.org/10.1007/s13197-017-2523-x CrossRefGoogle Scholar
  28. Dahiya DK, Puniya AK (2017) Optimisation of fermentation variables for conjugated linoleic acid bioconversion by Lactobacillus fermentum DDHI27 in modified skim milk. Int J Dairy Technol 71:46–55.  https://doi.org/10.1111/1471-0307.12375 CrossRefGoogle Scholar
  29. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CP, Flament C, Lepage P, Roberti MP, Routy B (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931–943.  https://doi.org/10.1016/j.immuni.2016.09.009 CrossRefGoogle Scholar
  30. de Angelis M, Bottacini F, Fosso B, Kelleher P, Calasso M, Di Cagno R, Ventura M, Picardi E, van Sinderen D, Gobbetti M (2014) Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PLoS ONE 9(9):e107232.  https://doi.org/10.1371/journal.pone.0107232 CrossRefGoogle Scholar
  31. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1):84–96.  https://doi.org/10.1016/j.cell.2013.12.016 CrossRefGoogle Scholar
  32. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Müller M, Groen AK, Hooiveld GJ, Bakker BM, Reijngoud DJ (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305(12):900–910.  https://doi.org/10.1152/ajpgi.00265.2013 CrossRefGoogle Scholar
  33. Dennis-Wall JC, Culpepper T, Nieves C, Rowe CC, Burns AM, Rusch CT, Federico A, Ukhanova M, Waugh S, Mai V, Christman MC (2017) Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9–1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 105(3):758–767.  https://doi.org/10.3945/ajcn.116.140012 CrossRefGoogle Scholar
  34. Depeint F, Tzortzis G, Vulevic J, I'Anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87(3):785–791.  https://doi.org/10.1093/ajcn/87.3.785 CrossRefGoogle Scholar
  35. Deptula P, Chamlagain B, Edelmann M, Sangsuwan P, Nyman TA, Savijoki K, Piironen V, Varmanen P (2017) Food-like growth conditions support production of active vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the lower ligand base, or cobalt supplementation. Front Microbiol 8:368.  https://doi.org/10.3389/fmicb.2017.00368 CrossRefGoogle Scholar
  36. Deptula P, Kylli P, Chamlagain B, Holm L, Kostiainen R, Piironen V, Savijoki K, Varmanen P (2015) BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii. Microb Cell Fact 14:186.  https://doi.org/10.1186/s12934-015-0363-9 CrossRefGoogle Scholar
  37. Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N, Meyer T, Pollard KS, Sonnenburg JL, Fischbach MA (2016) Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 20(6):709–715.  https://doi.org/10.1016/j.chom.2016.10.021 CrossRefGoogle Scholar
  38. Dicks LM, Dreyer L, Smith C, Van Staden AD (2018) A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut–blood barrier? Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02297
  39. Dicks LMT, Geldenhuys J, Mikkelsen LS, Brandsborg E, Marcotte H (2017) Our gut microbiota: a long walk to homeostasis. Benef Microbes 9(1):3–20.  https://doi.org/10.3920/BM2017.0066 CrossRefGoogle Scholar
  40. Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. Science 349(6246):1254766.  https://doi.org/10.1126/science.1254766 CrossRefGoogle Scholar
  41. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526.  https://doi.org/10.1016/j.cmet.2011.02.018 CrossRefGoogle Scholar
  42. Dorrestein PC, Mazmanian SK, Knight R (2014) Finding the missing links among metabolites, microbes, and the host. Immunity 40(6):824–832.  https://doi.org/10.1016/j.immuni.2014.05.015 CrossRefGoogle Scholar
  43. Douillard FP, De Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Fact 13(1):S8.  https://doi.org/10.1186/1475-2859-13-S1-S8 CrossRefGoogle Scholar
  44. Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C (2013) Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 9(8):e1003683.  https://doi.org/10.1371/journal.pgen.1003683 CrossRefGoogle Scholar
  45. Drissi F, Raoult D, Merhej V (2017) Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog 106:182–194.  https://doi.org/10.1016/j.micpath.2016.03.006 CrossRefGoogle Scholar
  46. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73(4):1073–1078.  https://doi.org/10.1128/AEM.02340-06 CrossRefGoogle Scholar
  47. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11(7):497–504.  https://doi.org/10.1038/nrmicro3050 CrossRefGoogle Scholar
  48. Elinav E, Garrett WS, Trinchieri G, Wargo J (2019) The cancer microbiome. Nat Rev Cancer 19:371–376.  https://doi.org/10.1038/s41568-019-0155-3 CrossRefGoogle Scholar
  49. Elshaghabee FM, Rokana N, Panwar H, Heller KJ, Schrezenmeir J (2019) Probiotics as a dietary intervention for reducing the risk of nonalcoholic fatty liver disease. In: Arora D, Sharma C, Jaglan S, Lichtfouse E (eds) Pharmaceuticals from microbes. Environmental chemistry for a sustainable world, vol 28. Springer Nature, Cham, Switzerland, pp 207–223. ISBN 978-3-030-04674-3. https://doi.org/10.1007/978-3-030-04675-0_8
  50. Evans M, Salewski RP, Christman MC, Girard SA, Tompkins TA (2016) Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr 116(1):94–103.  https://doi.org/10.1017/S0007114516001665 CrossRefGoogle Scholar
  51. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R (2017) Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutri 64(3):413–417.  https://doi.org/10.1097/MPG.0000000000001422 CrossRefGoogle Scholar
  52. Fan WT, Ding C, Xu NN, Zong S, Ma P, Gu B (2017) Close association between intestinal microbiota and irritable bowel syndrome. Eur J Clin Microbiol Infect 36(12):2303–2317.  https://doi.org/10.1007/s10096-017-3060-2 CrossRefGoogle Scholar
  53. Farnworth ER, Champagne C (2010) Production of probiotic cultures and their incorporation into foods. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health, probiotics and prebiotics. Academic Press, London, pp 3–17. ISBN: 978-0-12-374938-3.  https://doi.org/10.1016/B978-0-12-374938-3.00001-3
  54. Farr CD, Burd C, Tabet MR, Wang X, Welsh WJ, Ball WJ (2002) Three-dimensional quantitative structure activity relationship study of the inhibition of Na+, K+-ATPase by cardiotonic steroids using comparative molecular field analysis. Biochemistry 41(4):1137–1148.  https://doi.org/10.1021/bi011511g CrossRefGoogle Scholar
  55. Feizizadeh S, Salehi-Abargouei A, Akbari V (2014) Efficacy and safety of Saccharomyces boulardii for acute diarrhea. Pediatrics 134(1):176–191.  https://doi.org/10.1542/peds.2013-3950 CrossRefGoogle Scholar
  56. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10(4):336–347.  https://doi.org/10.1016/j.chom.2011.10.002 CrossRefGoogle Scholar
  57. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266.  https://doi.org/10.1038/nature15766 CrossRefGoogle Scholar
  58. Frank P, Ottoboni MA (2011) The dose makes the poison: a plain-language guide to toxicology. Wiley, New York, ISBN 9780470381120Google Scholar
  59. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517.  https://doi.org/10.2337/db08-1637 CrossRefGoogle Scholar
  60. Gérard P (2019) Gastrointestinal tract: microbial metabolism of steroids. In: Goldfine H (ed) Health consequences of microbial interactions with hydrocarbons, oils, and lipids, handbook of hydrocarbon and lipid microbiology. https://doi.org/10.1007/978-3-319-72473-7_32-1
  61. Gerritsen J, Smidt H, Rijkers GT, Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209.  https://doi.org/10.1007/s12263-011-0229-7 CrossRefGoogle Scholar
  62. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15(3):382–392.  https://doi.org/10.1016/j.chom.2014.02.005 CrossRefGoogle Scholar
  63. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610):94–103.  https://doi.org/10.1038/nature18850 CrossRefGoogle Scholar
  64. Goethel A, Turpin W, Rouquier S, Zanello G, Robertson SJ, Streutker CJ, Philpott DJ, Croitoru K (2019) Nod2 influences microbial resilience and susceptibility to colitis following antibiotic exposure. Mucosal Immunol 12:720–732.  https://doi.org/10.1038/s41385-018-0128-y CrossRefGoogle Scholar
  65. Goodman, Gillman's (2011) The Pharmacological Basis of Therapeutics. ISBN 978-0071624428 McGraw-Hill. NY, USA.Google Scholar
  66. Guandalini S, Sansotta N (2019) Probiotics in the treatment of inflammatory bowel disease. In: Guandalini S, Indrio F (eds) Probiotics and child gastrointestinal health. Advances in experimental medicine and biology, vol 1125. Springer Nature, Cham, Switzerland. ISBN 978-3-030-14635-1. https://doi.org/10.1007/5584_2018_319
  67. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384.  https://doi.org/10.1017/S0954422410000247 CrossRefGoogle Scholar
  68. Haiser HJ, Turnbaugh PJ (2013) Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 69(1):21–31.  https://doi.org/10.1016/j.phrs.2012.07.009 CrossRefGoogle Scholar
  69. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341(6143):295–298.  https://doi.org/10.1126/science.1235872 CrossRefGoogle Scholar
  70. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2002) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67CrossRefGoogle Scholar
  71. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefGoogle Scholar
  72. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(1):43–45CrossRefGoogle Scholar
  73. Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51(5):448–454.  https://doi.org/10.1099/0022-1317-51-5-448 CrossRefGoogle Scholar
  74. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221.  https://doi.org/10.1038/nature11209 CrossRefGoogle Scholar
  75. Humblot C, Murkovic M, Rigottier-Gois L, Bensaada M, Bouclet A, Andrieux C, Anba J, Rabot S (2007) β-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo [4, 5-f] quinoline in rats. Carcinogenesis 28(11):2419–2425.  https://doi.org/10.1093/carcin/bgm170 CrossRefGoogle Scholar
  76. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakesand its Panel on Folate, Other B Vitamins, and Choline (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. ISBN 978-0-309-06411-8, National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK114310/
  77. Iyer R, Tomar SK, Mohanty AK, Singh P, Singh R (2011) Bioprospecting of strains of Streptococcus thermophilus from Indian fermented milk products for folate production. Dairy SciTechnol 91(2):237–246.  https://doi.org/10.1007/s13594-011-0011-z CrossRefGoogle Scholar
  78. Jia W, Li H, Zhao L, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7(2):123–129.  https://doi.org/10.1038/nrd2505 CrossRefGoogle Scholar
  79. Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C (2014) Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 20(5):731–741.  https://doi.org/10.1016/j.cmet.2014.10.003 CrossRefGoogle Scholar
  80. Juarez del Valle MJ, Laiño JE, de Giori GS, LeBlanc JG (2014) Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res Int 62:1015–1019.  https://doi.org/10.1016/j.foodres.2014.05.029 CrossRefGoogle Scholar
  81. Juarez del Valle MJ, Laiño JE, de LeBlanc AD, de Giori GS, LeBlanc JG (2016) Soyamilk fermented with riboflavin-producing Lactobacillus plantarum CRL 2130 reverts and prevents ariboflavinosis in murine models. Br J Nutr 116(7):1229–1235.  https://doi.org/10.1017/S0007114516003378 CrossRefGoogle Scholar
  82. Kang D, Shi B, Erfe MC, Craft N, Li H (2015) Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci Transl Med 7(293):293ra103. https://doi.org/10.1126/scitranslmed.aab2009
  83. Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, Otsuka M, Hasunuma O, Kurihara R, Iwasaki A, Arakawa Y (2004) Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 20(10):1133–1141.  https://doi.org/10.1111/j.1365-2036.2004.02268.x CrossRefGoogle Scholar
  84. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 7(4):1829.  https://doi.org/10.1038/ncomms2852 CrossRefGoogle Scholar
  85. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585.  https://doi.org/10.1038/nm.3145 CrossRefGoogle Scholar
  86. Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota 356(6344):eaag2770. https://doi.org/10.1126/science.aag2770
  87. Krauss RM, Zhu H, Kaddurah-Daouk R (2013) Pharmacometabolomics of statin response. Clin Pharmacol Ther 94(5):562–565.  https://doi.org/10.1038/clpt.2013.164 CrossRefGoogle Scholar
  88. Krishnan R, Wilkinson I, Joyce L, Rofe AM, Bais R, Conyers RA, Edwards JB (1980) The effect of dietary xylitol on the ability of rat caecal flora to metabolise xylitol. Immunol Cell Biol 58(6):639–652.  https://doi.org/10.1038/icb.1980.66 CrossRefGoogle Scholar
  89. Krishnan S, Alden N, Lee K (2015) Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol 36:137–145.  https://doi.org/10.1016/j.copbio.2015.08.015 CrossRefGoogle Scholar
  90. Kruse HP, Kleessen B, Blaut M (1999) Effects of inulin on faecal bifidobacteria in human subjects. Br J Nutr 82(5):375–382.  https://doi.org/10.1017/S0007114599001622 CrossRefGoogle Scholar
  91. Kumar N, Kumari V, Ram C, Thakur K, Tomar SK (2018) Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 19:1–7.  https://doi.org/10.1007/s00253-018-8743-9 CrossRefGoogle Scholar
  92. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82(20):6955–6959.  https://doi.org/10.1073/pnas.82.20.6955 CrossRefGoogle Scholar
  93. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, Motherway MO, Hill C, Pot B, Roos S, Klaenhammer T (2018) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49:217–223.  https://doi.org/10.1016/j.copbio.2017.10.007 CrossRefGoogle Scholar
  94. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, Van Sinderen D, Taranto MP, de Valdez G, de Giori GS, Sesma F (2011) B-Group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309.  https://doi.org/10.1111/j.1365-2672.2011.05157.x CrossRefGoogle Scholar
  95. LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16:79.  https://doi.org/10.1186/s12934-017-0691-z CrossRefGoogle Scholar
  96. Lee H, Ko G (2014) Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 80(19):5935–5943.  https://doi.org/10.1128/AEM.01357-14 CrossRefGoogle Scholar
  97. Lemes AC, Sala L, Ores JDC, Braga ARC, Egea MB, Fernandes KF (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci 17:950.  https://doi.org/10.3390/ijms17060950 CrossRefGoogle Scholar
  98. Lemon KP, Armitage GC, Relman DA, Fischbach MA (2012) Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 4(137):137rv5. https://doi.org/10.1126/scitranslmed.3004183
  99. Leonel AJ, Alvarez-Leite JI (2012) Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 15(5):474–479.  https://doi.org/10.1097/MCO.0b013e32835665fa CrossRefGoogle Scholar
  100. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023.  https://doi.org/10.1038/4441022a CrossRefGoogle Scholar
  101. Linares DM, Gomez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C (2017) Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846.  https://doi.org/10.3389/fmicb.2017.00846 CrossRefGoogle Scholar
  102. Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305(14):789–794.  https://doi.org/10.1056/NEJM198110013051403 CrossRefGoogle Scholar
  103. Lopez CA, Kingsbury DD, Velazquez EM, Bäumler AJ (2014) Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe 16(2):156–163.  https://doi.org/10.1016/j.chom.2014.07.009 CrossRefGoogle Scholar
  104. Lorenzo A, Costacurta M, Merra G, Gualtieri P, Cioccoloni G, Marchetti M, Varvaras D, Docimo R, Renzo L (2017) Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med 15:135.  https://doi.org/10.1186/s12967-017-1236-2 CrossRefGoogle Scholar
  105. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8.  https://doi.org/10.1111/j.1574-6968.2009.01514.x CrossRefGoogle Scholar
  106. Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63:437–459.  https://doi.org/10.1124/pr.110.003533 CrossRefGoogle Scholar
  107. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M (2013) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63(8):1275–1283.  https://doi.org/10.1136/gutjnl-2013-304833 CrossRefGoogle Scholar
  108. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U.S.A. 103(42):15611–15616https://doi.org/10.1073/pnas.0607117103
  109. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A, Viappiani A, Scholz M, Arioli S (2015) Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 5:15782.  https://doi.org/10.1038/srep15782 CrossRefGoogle Scholar
  110. Murphy PJ (2001) Xenobiotic metabolism: a look from the past to the future. Drug Metab Dispos 29(6):779–780Google Scholar
  111. Nicholson JK, Holmes E, Lindon JC, Wilson ID (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22:1268–1274.  https://doi.org/10.1038/nbt1015 CrossRefGoogle Scholar
  112. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinic JGastroenterol 11(1):1–10.  https://doi.org/10.1007/s12328-017-0813-5 CrossRefGoogle Scholar
  113. Odamaki T, Bottacini F, Kato K, Mitsuyama E, Yoshida K, Horigome A, Xiao JZ, van Sinderen D (2018) Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci Rep 8(1):85. https://doi.org/10.1038/s41598-017-18391-x.
  114. Okuda KI, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57(11):5572–5579.  https://doi.org/10.1128/AAC.00888-13 CrossRefGoogle Scholar
  115. Panicker AS, Behare PV, Munjal K, Kumar S, Naru J, Singh S, Rawat P, Bathla S, Bhushan B, Jamwal M, Mohanty AK (2015) Differential proteome study of putative probiotic Lactobacillus fermentum Bif-19 strain in response to bile stress. J Proteins Proteomics 6(2):197–210Google Scholar
  116. Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, Baccaglini L, Mohapatra A, Mohapatra SS, Misra PR, Chaudhry R (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548(7668):407.  https://doi.org/10.1038/nature23480 CrossRefGoogle Scholar
  117. Patterson AD, Turnbaugh PJ (2014) Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. Cell Metab 20(5):761–768.  https://doi.org/10.1016/j.cmet.2014.07.002 CrossRefGoogle Scholar
  118. Pedret A, Valls RM, Calderón-Pérez L, Llauradó E, Companys J, Pla-Pagà L, Moragas A, Martín-Luján F, Ortega Y, Giralt M, Caimari A (2018) Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int J Obes (Lon). https://doi.org/10.1038/s41366-018-0220-0
  119. Pei LY, Ke YS, Zhao HH, Wang L, Jia C, Liu WZ, Fu QH, Shi MN, Cui J, Li SC (2019) Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol 19:10.  https://doi.org/10.1186/s12876-019-0930-3 CrossRefGoogle Scholar
  120. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13:S3.  https://doi.org/10.1186/1475-2859-13-S1-S3 CrossRefGoogle Scholar
  121. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113.  https://doi.org/10.1038/nm.4236 CrossRefGoogle Scholar
  122. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M (2007) Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73(1):179–185.  https://doi.org/10.1128/AEM.01763-06 CrossRefGoogle Scholar
  123. Pu F, Guo Y, Li M, Zhu H, Wang S, Shen X, He M, Huang C, He F (2017) Yogurt supplemented with probiotics can protect the healthy elderly from respiratory infections: a randomized controlled open-label trial. Clin Interv Aging 12:1223–1231.  https://doi.org/10.2147/CIA.S141518 CrossRefGoogle Scholar
  124. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60.  https://doi.org/10.1038/nature11450 CrossRefGoogle Scholar
  125. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM (2014) Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes 38(12):1525–1531.  https://doi.org/10.1038/ijo.2014.46 CrossRefGoogle Scholar
  126. Remely M, Tesar I, Hippe B, Gnauer S, Rust P, Haslberger AG (2015) Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef Microbes 6(4):431–439.  https://doi.org/10.3920/BM2014.0104 CrossRefGoogle Scholar
  127. Renwick AG, Tarka SM (2008) Microbial hydrolysis of steviol glycosides. Food Chem Toxicol 46(7):70–74.  https://doi.org/10.1016/j.fct.2008.05.008 CrossRefGoogle Scholar
  128. Said HM, Mohammed ZM (2006) Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22(2):140–146.  https://doi.org/10.1097/01.mog.0000203870.22706.52 CrossRefGoogle Scholar
  129. Said HM, Ross AC (2014) Riboflavin. In: Ross AC, Caballaro B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease, 11th edn. Lippincott Williams & Wilkins, Philadelphia, pp 325–330Google Scholar
  130. Saini K, Tomar SK (2017) In vitro evaluation of probiotic potential of Lactobacillus cultures of human origin capable of selenium bioaccumulation. LWT-Food Sci Technol 84:497–504.  https://doi.org/10.1016/j.lwt.2017.05.034 CrossRefGoogle Scholar
  131. Saini K, Tomar SK, Bhushan B, Ali B, Sangwan V (2015) Health effects of selenium supplementation: chemical form and dose hold the key. Curr Top Nutraceutical Res 13(1):1–13Google Scholar
  132. Saini K, Tomar SK, Sangwan V, Bhushan B (2014) Evaluation of lactobacilli from human sources for uptake and accumulation of selenium. Biol Trace Elem Res 160:433.  https://doi.org/10.1007/s12011-014-0065-x CrossRefGoogle Scholar
  133. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310.  https://doi.org/10.1016/S0958-1669(03)00067-3 CrossRefGoogle Scholar
  134. Seck EH, Senghor B, Merhej V, Bachar D, Cadoret F, Robert C, Azhar EI, Yasir M, Bibi F, Jiman-Fatani AA, Konate DS, Musso D, Doumbo O, Sokhna C, Levasseur A, Lagier JC, Khelaifia S, Million M, Raoult D (2019) Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int J Obes 43(4):862.  https://doi.org/10.1038/s41366-018-0201-3 CrossRefGoogle Scholar
  135. Singh BP, Vij S (2017) Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: a LC-MS/MS based revelation for peptides biofunctionality. LWT-Food Sci Technol 86:293–301.  https://doi.org/10.1016/j.lwt.2017.08.013 CrossRefGoogle Scholar
  136. Singh BP, Vij S (2018) In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes. LWT-Food Sci Technol 91:303–307.  https://doi.org/10.1016/j.lwt.2018.01.066 CrossRefGoogle Scholar
  137. Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides 54:171–179.  https://doi.org/10.1016/j.peptides.2014.01.022 CrossRefGoogle Scholar
  138. Singh BP, Yadav D, Vij S (2017) Soybean bioactive molecules: current trend and future prospective. In: Mérillon JM, Ramawat KG (eds) Bioactive molecules in food, reference series in phytochemistry. Springer, Switzerland, pp 267–294. ISBN 978-3-319-78029-0. https://dx.doi.org/10.1007/978-3-319-54528-8_4-1.
  139. Şirvan BN, Usta MK, Kizilkan NU, Urganci N (2017) Are synbiotics added to the standard therapy to eradicate Helicobacter pylori in children beneficial? A randomized controlled study. Euroasian J Hepatogastroenterol 7(1):17–22.  https://doi.org/10.5005/jp-journals-10018-1205 CrossRefGoogle Scholar
  140. Spaiser SJ, Culpepper T, Nieves C Jr, Ukhanova M, Mai V, Percival SS, Christman MC, Langkamp-Henken B (2015) Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9–1, and Bifidobacterium longum MM-2 ingestion induces a less inflammatory cytokine profile and a potentially beneficial shift in gut microbiota in older adults: a randomized, double-blind, placebo-controlled, crossover study. J Am Coll Nutr 34(6):459–469.  https://doi.org/10.1080/07315724.2014.983249 CrossRefGoogle Scholar
  141. Sundin J, Rangel I, Repsilber D, Brummer RJ (2015) Cytokine response after stimulation with key commensal bacteria differ in post-infectious irritable bowel syndrome (PI-IBS) patients compared to healthy controls. PLoS One 10(9):e0134836.  https://doi.org/10.1371/journal.pone.0134836 CrossRefGoogle Scholar
  142. Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M, Takeshita K, Kanai T, Saijo S, Ohno N (2015) Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18(2):183–197.  https://doi.org/10.1016/j.chom.2015.07.003 CrossRefGoogle Scholar
  143. Tap J, Derrien M, Törnblom H, Brazeilles R, Cools-Portier S, Doré J, Störsrud S, Le Nevé B, Öhman L, Simrén M (2017) Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterol 152(1):111–123. https://www.sciencedirect.com/science/article/pii/S0016508516351745
  144. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185(18):5643–5647.  https://doi.org/10.1128/JB.185.18.5643-5647.2003 CrossRefGoogle Scholar
  145. Thaiss CA, Levy M, Itav S, Elinav E (2016) Integration of innate immune signaling. Trends Immunol 37(2):84–101.  https://doi.org/10.1016/j.it.2015.12.003 CrossRefGoogle Scholar
  146. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836.  https://doi.org/10.1042/BCJ20160510 CrossRefGoogle Scholar
  147. Todorov SD, Dicks LM (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme Microb Technol 36(2–3):318–326.  https://doi.org/10.1016/j.enzmictec.2004.09.009 CrossRefGoogle Scholar
  148. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Res 81(3):1031–1064.  https://doi.org/10.1152/physrev.2001.81.3.1031 CrossRefGoogle Scholar
  149. Torres AC, Vannini V, Bonacina J, Font G, Saavedra L, Taranto MP (2016) Cobalamin production by Lactobacillus coryniformis: biochemical identification of the synthetized corrinoid and genomic analysis of the biosynthetic cluster. BMC Microbiol 16(1):240.  https://doi.org/10.1186/s12866-016-0854-9 CrossRefGoogle Scholar
  150. Trebichavsky I, Splichal I, Rada V, Splichalova A (2010) Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr Rev 68(8):459–464.  https://doi.org/10.1111/j.1753-4887.2010.00305.x CrossRefGoogle Scholar
  151. Van Zyl WF, Deane SM, Dicks LM (2015) Use of the mCherry fluorescent protein to study intestinal colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in mice. Appl Environ Microbiol 81(17):5993–6002. https://dx.doi.org/10.1128/AEM.01247-15.
  152. Van Zyl WF, Deane SM, Dicks LM (2016) Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 excludes Listeria monocytogenes from the GIT, as shown by bioluminescent studies in mice. Benef Microbes 7(2):227–235.  https://doi.org/10.3920/BM2015.0082 CrossRefGoogle Scholar
  153. Van Zyl WF, Deane SM, Dicks LM (2018) In vivo bioluminescence imaging of the spatial and temporal colonization of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA in the intestinal tract of mice. BMC Microbiol 18(1):171.  https://doi.org/10.1186/s12866-018-1315-4 CrossRefGoogle Scholar
  154. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976.  https://doi.org/10.1126/science.1240537 CrossRefGoogle Scholar
  155. Vieira-Silva S, Sabino J, Valles-Colomer M, Falony G, Kathagen G, Caenepeel C, Cleynen I, van der Merwe S, Vermeire S, Raes J (2019) Quantitative microbiome profiling disentangles inflammation-and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat Microbiol. https://doi.org/10.1038/s41564-019-0483-9
  156. Walker AW, Duncan SH, Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700.  https://doi.org/10.1128/AEM.71.7.3692-3700.2005 CrossRefGoogle Scholar
  157. Wang Z, Zeng X, Mo Y, Smith K, Guo Y, Lin J (2012) Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol 78(24):8795–8802.  https://doi.org/10.1128/AEM.02519-12 CrossRefGoogle Scholar
  158. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106(10):3698–3703.  https://doi.org/10.1073/pnas.0812874106 CrossRefGoogle Scholar
  159. Williams RJ (1956) Biochemical individuality; the basis for the genetotrophic concept. Wiley, Oxford. ISBN 978-0292700222Google Scholar
  160. Yamakami K, Tsumori H, Sakurai Y, Shimizu Y, Nagatoshi K, Sonomoto K (2013) Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharm Biol 51(2):267–270.  https://doi.org/10.3109/13880209.2012.717227 CrossRefGoogle Scholar
  161. Yu LC, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR, Ni YH (2014) Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol. 307(8):824–835.  https://doi.org/10.1152/ajpgi.00070.2014 CrossRefGoogle Scholar
  162. Yu Y, Zhu X, Shen Y, Yao H, Wang P, Ye K, Wang X, Gu Q (2015) Enhancing the vitamin B12 production and growth of Propionibacterium freudenreichii in tofu wastewater via a light-induced vitamin B12 riboswitch. App Microbiol Biotechnol 99(24):10481–10488.  https://doi.org/10.1007/s00253-015-6958-6 CrossRefGoogle Scholar
  163. Zhang Q, Xiao X, Li M, Yu M, Ping F, Zheng J, Wang T, Wang X (2017) Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE 12(10):e0184735.  https://doi.org/10.1371/journal.pone.0184735 CrossRefGoogle Scholar
  164. Zhang X, Zhu X, Cao Y, Fang JY, Hong J, Chen H (2019) Fecal Fusobacterium nucleatum for the diagnosis of colorectal tumor: a systematic review and meta-analysis. Cancer Med 8(2):480–491.  https://doi.org/10.1002/cam4.1850 CrossRefGoogle Scholar
  165. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 9:359(6380):1151–1156. https://doi.org/10.1126/science.aao5774.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Food Technology Entrepreneurship and ManagementSonipatIndia
  2. 2.RK UniversityRajkotIndia
  3. 3.ICAR-National Dairy Research InstituteKarnalIndia

Personalised recommendations