Skip to main content
Log in

High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Fresh food products such as fruits and vegetables are usually degrading fast after harvest, notably due to the production of ethylene, an aging hormone, by the products. Therefore, ethylene adsorbents in the form of powders are commonly used in packaging to maintain the postharvest quality of fresh products. The use of naturally-based adsorbents is preferred for safe food-packaging applications. Here we studied halloysite nanotubes as natural ethylene scavengers. We tested the effect of storage conditions on the kinetics of ethylene adsorption. Raw halloysite nanotubes were subjected to alkaline treatment to increase their pore size. We compared the efficacy of raw halloysite nanotubes versus alkaline halloysite nanotubes. Materials were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. Results show that alkali-treated halloysite nanotubes have the highest ethylene adsorption capacity at 11% relative humidity and 23 °C. The ethylene adsorption kinetics data were slightly fitted to a pseudo-first-order model, and the rate constant of the ethylene adsorption was 0.7107 min−1. After 24 h, 49 μL of ethylene gas present in headspace was removed with 1 g of alkali halloysite nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank the Ministry of Trade, Industry & Energy (MOTIE, Korea) under the Industry Technology Innovation Program for its financial support. This research study is part of a project titled “Development of multi-functional porous ceramic convergence materials for high-quality keeping freshness packaging” (No. 10063291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Suk Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, K.K., Singh, S. & Lee, Y.S. High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications. Environ Chem Lett 16, 1055–1062 (2018). https://doi.org/10.1007/s10311-018-0718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-018-0718-7

Keywords

Navigation