Skip to main content
Log in

High reduction of 4-nitrophenol using reduced graphene oxide/Ag synthesized with tyrosine

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

There is a demand for the development of environmental friendly methods for the synthesis of graphene composites. Reduced graphene oxide/silver (RGO/Ag) nanocomposites are very good catalysts. Here, we propose a simple, green method for the synthesis of RGO/Ag nanocomposite using the amino acid tyrosine as bioreductant and stabilizing agent. RGO/Ag nanocomposite was characterized by using various analytical techniques and studied for its catalytic degradation of 4-nitrophenol. Results of attenuated total reflectance Fourier transform infrared spectroscopy and Zeta potential at −55 mV reveal the surface capping of tyrosine onto the reduced graphene oxide nanosheets. RGO/Ag nanocomposites show excellent catalytic reduction of 4-nitrophenol with NaBH4, when compared to actual individual silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860. doi:10.1016/j.carbon.2011.12.035

    Article  CAS  Google Scholar 

  • Ashraf S, Abbasi AZ, Pfeiffer C, Hussain SZ, Khalid ZM, Gil PR, Parak WJ, Hussain I (2013) Protein-mediated synthesis, pH-induced reversible agglomeration, toxicity and cellular interaction of silver nanoparticles. Colloids Surf B 102:511–518. doi:10.1016/j.colsurfb.2012.09.032

    Article  CAS  Google Scholar 

  • Chai L, Wang T, Zhang L, Wang H, Yang W, Dai S, Meng Y, Li X (2014) A Cu–m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81:748–757. doi:10.1016/j.carbon.2014.10.018

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  • Hsu KC, Chen DH (2014) Green synthesis and synergistic catalytic effect of Ag/reduced grapheme oxide nanocomposites. Nanoscale Res Lett 9:1–10. doi:10.1186/1556-276X-9-484

    Article  Google Scholar 

  • Kim YK, Min DH (2012) Simultaneous reduction and functionalization of graphene oxide by polyallylamine for nanocomposite formation. Carbon Lett 13:29–33. doi:10.5714/CL.2012.13.1.029

    Article  Google Scholar 

  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921. doi:10.1016/j.carbon.2011.09.053

    Article  CAS  Google Scholar 

  • Li J, Xiao G, Chen C, Li R, Yan D (2013) Superior dispersions of reduced graphene oxide synthesized by using gallic acid as reductant and stabilizer. J Mater Chem 1:1481–1487. doi:10.1039/C2TA00638C

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK (2014) Low-cost and eco-friendly green methods for graphene synthesis. Int J Nano Sci Technol 3:46–61

    Google Scholar 

  • Maddinedi SB, Mandal BK (2015) Biofabrication of reduced graphene oxide nanosheets using terminalia bellirica fruit extract. Curr nanosci. 12:94–102. doi:10.2174/1573413711666150520224358

    Article  Google Scholar 

  • Maddinedi SB, Mandal BK, Vankayala R, Kalluru P, Tammina SK, Kiran Kumar HA (2014) Casein mediated green synthesis and decoration of reduced graphene oxide. Spectrochim. Acta Part A Mol Biomol Spectrosc 126:227–231. doi:10.1016/j.saa.2014.01.114

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015a) Diastase assisted green synthesis of size controllable gold nanoparticles. RSC Adv 5:26727–26733. doi:10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Vankayala R, Kalluru P, Pamanji SR (2015b) Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract. Spectrochim Acta Part A 145:117–124. doi:10.1016/j.saa.2015.02.037

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B 166:252–258. doi:10.1016/j.jphotobiol.2016.12.008

    Article  CAS  Google Scholar 

  • Paredes JI, Rodil SV, Merino MJF, Guardia L, Alonso AM, Tascon JMD (2011) Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J Mater Chem 21:298–306. doi:10.1039/C0JM01717E

    Article  CAS  Google Scholar 

  • Perera SD, Mariano RG, Nijem N, Chabal Y, Ferraris JP, Balkus KJ (2012) Alkaline deoxygenated graphene oxide for supercapacitor applications: an effective green alternative for chemically reduced graphene. J Power Sources 215:1–10. doi:10.1016/j.jpowsour.2012.04.059

    Article  CAS  Google Scholar 

  • Saraschandra N, Lakshmi Kumari P, Das RK, Sivakumar A, Patil SH, Andhalkar VV (2016) Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C 62:293–300. doi:10.1016/j.msec.2016.01.069

    Article  Google Scholar 

  • Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Murali S (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20:7825. doi:10.1021/la049258j

    Article  CAS  Google Scholar 

  • Si Y, Samulski ET, Hill C, Carolina N (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682. doi:10.1021/nl080604h

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  • Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339. doi:10.1016/j.carbon.2012.07.023

    Article  CAS  Google Scholar 

  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. doi:10.1021/jp710931h

    Article  CAS  Google Scholar 

  • Yeh CC, Chen DH (2014) Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity. Appl Catal B Environ 150–151:298–304. doi:10.1016/j.apcatb.2013.12.040

    Article  Google Scholar 

  • Zhang YW, Liu S, Lu WB, Wang L, Tian JQ, Sun XP (2001) In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal Sci Technol 1:1142–1144. doi:10.1039/C1CY00205H

    Article  Google Scholar 

  • Zhang L, Chai L, Duan J, Li G, Wang H, Yu W, Sang P (2011) One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Mater Lett 65:1295–1298. doi:10.1016/j.matlet.2011.01.062

    Article  CAS  Google Scholar 

  • Zhang L, Wang T, Wang H, Meng Y, Yu W, Chai L (2013) Graphene@poly (m phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem Commun 49:9974–9976. doi:10.1039/C3CC45261A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. SBM greatly acknowledges the help of VIT University, Vellore-632014, India for the financial help and platform given to do this research. Also, SBM acknowledges the help from Korean Basic Science Institute, Busan Center, Busan 618 230, South Korea for Transmission electron microscopy, X-ray photoelectron spectroscopy and FE-SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badal Kumar Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddinedi, S.B., Mandal, B.K. & Fazlur-Rahman, N.K. High reduction of 4-nitrophenol using reduced graphene oxide/Ag synthesized with tyrosine. Environ Chem Lett 15, 467–474 (2017). https://doi.org/10.1007/s10311-017-0610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0610-x

Keywords

Navigation