Skip to main content

Advertisement

Log in

Microbial fuel cells to recover heavy metals

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Heavy metals play a major role in several industrial, medical, and household applications. However, as constituents of effluents from many industries, heavy metals also pose a serious problem to the environment and public health due to their toxicity, bioaccumulation, and non-biodegradability. Conventional physical, chemical, and biological methodologies to treat wastewater containing heavy metals are energy-intensive and become ineffective if metals concentrations are below 1–100 mg L−1. Microbial fuel cells appear promising for wastewater treatment and metal recovery by bioelectrocatalysis because metal ions can be reduced and deposited by bacteria, algae, yeasts, and fungi. Interestingly, treatment of heavy metal-containing wastewater can be attempted in both anode and cathode chambers of microbial fuel cells. Here, we review the treatment of metal-containing effluents using microbial fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abourached C, Catal T, Liu H (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res 51:228–233. doi:10.1016/j.watres.2013.10.062

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Balat M (2010) Microbial fuel cells as an alternative energy option. Energy Sour A Recovery Utili Environ Effect 32:26–35. doi:10.1080/15567030802466045

    Article  CAS  Google Scholar 

  • Blondeau JP, Veron O (2010) Precipitation of silver nanoparticles in glass by multiple wavelength nanosecond laser irradiation. J Optoelectron Adv Mater 12:445–450

    CAS  Google Scholar 

  • Catal T, Hakan Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31:1211–1216. doi:10.1007/s10529-009-9990-8

    Article  CAS  Google Scholar 

  • Chatelut M, Gobert E, Vittori O (2000) Silver electrowinning from photographic fixing solutions using zirconium cathode. Hydrometallurgy 54:79–90

    Article  CAS  Google Scholar 

  • Cheng S, Jang JH, Dempsey BA, Logan BE (2011) Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res 45:303–307

    Article  Google Scholar 

  • Cheng SA, Wang BS, Wang YH (2013) Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol 147:332–337. doi:10.1016/j.biortech.2013.08.040

    Article  CAS  Google Scholar 

  • Choi CS (2012) Method for heavy metal elimination or precious metal recovery using microbial fuel cell. US Patent Number: WO/2012/150738. Publication Date: 08.11.2012

  • Choi C, Cui Y (2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol 107:522–525. doi:10.1016/j.biortech.2011.12.058

    Article  CAS  Google Scholar 

  • Choi C, Hu N (2013) The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour Technol 133:589–598. doi:10.1016/j.biortech.2013.01.143

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Darolles C, Sage N, Armengaud J, Malard V (2013) In vitro assessment of cobalt oxide particle toxicity: identifying and circumventing interference. Toxicol In Vitro 27:1699–1710. doi:10.1016/j.tiv.2013.04.008

    Article  CAS  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  • Duteanu NM, Ghangrekar MM, Erable B, Scott K (2010) Microbial fuel cells—an option for wastewater treatment. Environ Eng Manag J 9:1069–1087

    CAS  Google Scholar 

  • Fradler KR, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2014) Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Res 55:115–125

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Garbarino JR, Hayes H, Roth D, Antweider R, Brinton TI, Taylor H (1995) Contaminants in the Mississippi river. US Geological Survey Circular, Virginia, p 1133

    Google Scholar 

  • Gregory KB, Lovley DR (2005) Remediation and recovery of Uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    Article  CAS  Google Scholar 

  • Gu HY, Zhang XW, Li ZJ, Lei LC (2007) Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chin Sci Bull 52:3448–3451

    Article  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

  • Heijne AT, Liu F, Weijden RVD, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381

    Article  Google Scholar 

  • Huang L, Chen J, Quan X, Yang F (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33:937–945. doi:10.1007/s00449-010-0417-7

    Article  CAS  Google Scholar 

  • Huang L, Chai X, Chen G, Logan BE (2011) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 45:5025–5031. doi:10.1021/es103875d

    Article  CAS  Google Scholar 

  • Huang L, Guo R, Jiang L, Quan X, Sun Y, Chen G (2013a) Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells. Chem Eng J 220:72–80

    Article  CAS  Google Scholar 

  • Huang L, Li T, Liu C, Quan X, Chen L, Wang A, Chen G (2013b) Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour Technol 128:539–546. doi:10.1016/j.biortech.2012.11.011

    Article  CAS  Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS (2004) Construction and operation of a novel mediator and membrane-less microbial fuel cell. Process Biochem 39:1007–1012

    Article  CAS  Google Scholar 

  • Jiang Y, Ulrich AC, Liu Y (2013) Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells. Bioresour Technol 139:349–354

    Article  CAS  Google Scholar 

  • Jiang J, Huang L, Sun Y (2014) Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. Int J Hydrogen Energy 39:654–663

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2013) Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging. ChemsusChem 6:246–250. doi:10.1002/cssc.201200747

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  • Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43:1352–1358

    Article  CAS  Google Scholar 

  • Li H, Feng Y, Zou X, Luo X (2009a) Study on microbial reduction of vanadium metallurgical waste water. Hydrometallurgy 99:13–17

    Article  CAS  Google Scholar 

  • Li Y, Lu A, Ding H, Jin S, Yan Y, Wanga C, Zen C, Wang X (2009b) Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11:1496–1499

    Article  CAS  Google Scholar 

  • Liang M, Tao HC, Li SF, Li W, Zhang LI, Ni JR (2011) Treatment of Cu2+-containing wastewater by microbial fuel cell with excess sludge as anodic substrate. Environ Sci Technol 32:179–185

    CAS  Google Scholar 

  • Lin ZQ, Terry N, Gao S, Mohamed S, Ye ZH (2010) Vegetation changes and partitioning of selenium in 4-year old constructed wetlands treating agricultural drainage. Int J Phytoremediation 12:255–267

    Article  CAS  Google Scholar 

  • Liu L, Yuan Y, Li FB, Feng CH (2011) In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol 102:2468–2473

    Article  CAS  Google Scholar 

  • Liu L, Yang Y, Li DL (2012) Accelerated hexavalent chromium [Cr(VI)] reduction with electrogenerated hydrogen peroxide in microbial fuel cells. Adv Mater Res 512–515:1525–1528. doi:10.4028/www.scientific.net/AMR.512-515.1525

    Article  Google Scholar 

  • Liu Y, Shen J, Huang L, Wu D (2013) Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells. J Hazard Mater 262:1–8. doi:10.1016/j.jhazmat.2013.08.004

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508. doi:10.1038/nrmicro1442

    Article  CAS  Google Scholar 

  • Luo H, Liu G, Zhang R, Bai Y, Fu S, Hou Y (2014) Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Mater 270:153–159. doi:10.1016/j.jhazmat.2014.01.050

    Article  CAS  Google Scholar 

  • Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285. doi:10.1007/s00253-001-0902-7

    Article  CAS  Google Scholar 

  • Mathuriya AS (2014) Eco-affectionate face of microbial fuel cells. Crit Rev Environ Sci Technol 44(97–153):1080. doi:10.1080/10643389.2012.710445

    Google Scholar 

  • Mathuriya AS, Sharma VN (2009) Bioelectricity production from various wastewaters through microbial fuel cell technology. J Biochem Technol 2:133–137

    CAS  Google Scholar 

  • Mathuriya AS, Sharma VN (2010) Treatment of brewery wastewater and production of electricity through microbial fuel cell technology. Int J Biotechnol Biochem 6:71–80

    Google Scholar 

  • Miller LG, Blum JS, Oremland RS (2006) Microbial fuel cell as life detector: arsenic cycling in hypersaline environments. Abstract #B13C-1105, Fall Meeting 2006, American Geophysical Union, USA

  • Narasingarao P, Häggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73:3519–3527

    Article  CAS  Google Scholar 

  • Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38(18):4900–4904

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. doi:10.1126/science.1081903

    Article  CAS  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292. doi:10.1002/elsc.200620121

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trend Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  • Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87:455–468

    CAS  Google Scholar 

  • Singhvi P, Chhabra M (2013) Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge microbial fuel cell. J Bioremediat Biodegradation 4:190. doi:10.4172/2155-6199.1000190

    Google Scholar 

  • Tandukar M, Ulas T, Pavlostathis SG (2009) Biological chromium (VI) reduction in microbial fuel cell: a three in one approach. Proc Water Environ Fed Sess 11–20(9):527–535

    Article  Google Scholar 

  • Tao HC, Li W, Liang M, Xu N, Ni JR, Wu WM (2011a) A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresour Technol 102:4774–4778. doi:10.1016/j.biortech.2011.01.057

    Article  CAS  Google Scholar 

  • Tao HC, Liang M, Li W, Zhang L, Ni JR, Wu WM (2011b) Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater 189:186–192. doi:10.1016/j.jhazmat.2011.02.018

    Article  CAS  Google Scholar 

  • Tao HC, Gao ZY, Ding H, Xu N, Wu WM (2012) Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresour Technol 111:92–97

    Article  CAS  Google Scholar 

  • Tao HC, Tao L, Shi G, Sun XN, Wei XY, Wei XY, Zhan LJ, Wu WM (2014) Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J Hazard Mater 264:1–7

    Article  CAS  Google Scholar 

  • Tartakovsky B, Guiot S (2006) A Comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol Prog 22:241–246

    Article  CAS  Google Scholar 

  • Thrash JC, Trump JIV, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical Stimulation of Microbial Perchlorate Reduction. Env Sci Technol 41:1740–1746. doi:10.1021/es062772m

    Article  CAS  Google Scholar 

  • Varia JC, Martinez SS, Velasquez-Orta S, Bull S (2014) Microbiological influence of metal ion electrodeposition: studies using graphite electrodes, [AuCl4] and Shewanella putrefaciens. Electrochim Acta 115:344–351

    Article  CAS  Google Scholar 

  • Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30:1959–1966. doi:10.1007/s10529-008-9792-4

    Article  CAS  Google Scholar 

  • Wang Z, Lim B, Lu H, Fan J, Choi C (2010) Cathodic reduction of Cu2+ and electric power generation using a microbial fuel cell. Bull Korean Chem Soc 31:20–25. doi:10.5012/bkcs.2010.31.7.2025

    Google Scholar 

  • Wang YH, Wang BS, Pan B, Chen QY, Yan W (2013) Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl Energy 112:1337–1341

    Article  CAS  Google Scholar 

  • Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    Article  CAS  Google Scholar 

  • World Health Organization (2006) Guidelines for drinking‐water quality incorporating first addendum [electronic resource]: vol 1, Recommendations

  • Xafenias N, Zhang Y, Banks CJ (2013) Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environ Sci Technol 47:4512–4520. doi:10.1021/es304606u

    Article  CAS  Google Scholar 

  • Xue A, Shen ZZ, Zhao B, Zhao HZ (2013) Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process. J Hazard Mater 261:621–627. doi:10.1016/j.jhazmat.2013.07.072

    Article  CAS  Google Scholar 

  • Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK (2012) Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng 47:126–131

    Article  Google Scholar 

  • Yang L, Wu Z, Wu J, Zhang Y, Li M, Lin ZQ, Bañuelos G (2014) Simultaneous removal of selenite and electricity production from Se-laden wastewater by constructed wetland coupled with microbial fuel cells. In: Bañuelos GS, Lin ZQ, Yin X (eds) Selenium in the environment and human health. Taylor & Francis, London, pp 212–214

    Google Scholar 

  • Ye WC, Shen CM, Tian JF, Wang CM, Hui C, Gao HJ (2009) Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sci 11:1088–1093

    Article  CAS  Google Scholar 

  • Yeon RE, Kim M, Lee SJ (2011) Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. J Microbiol Biotechnol 21:187–191

    Article  Google Scholar 

  • You SJ, Zhao QL, Jiang JQ, Zhang JN, Zhao SQ (2006) Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2721–2734

    Article  CAS  Google Scholar 

  • Yu CP, Liang Z, Das A, Hu Z (2011) Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res 45:1157–1164

    Article  CAS  Google Scholar 

  • Zhang C, Li M, Liu G, Luo H, Zhang R (2009) Pyridine degradation in the microbial fuel cells. J Hazard Mater 172:465–471

    Article  CAS  Google Scholar 

  • Zhang BG, Zhou SG, Zhao HZ, Shi CH, Kong LC, Sun JJ, Yang Y, Ni JR (2010a) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194

    Article  CAS  Google Scholar 

  • Zhang C, Liu G, Zhang R, Luo H (2010b) Electricity production from and biodegradation of quinoline in the microbial fuel cell. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:250–256

    Article  CAS  Google Scholar 

  • Zhang YJ, Zhang M, Yao X, Li YF (2011) A new technology of microbial fuel cell for treating both sewage and wastewater of heavy metal. Adv Mat Res 156–157:500–504

    Google Scholar 

  • Zhang B, Feng C, Ni J, Zhang J, Huang W (2012a) Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J Power Sources 204:34–39. doi:10.1016/j.jpowsour.2012.01.013

    Article  CAS  Google Scholar 

  • Zhang LJ, Tao HC, Wei XY, Lei T, Li JB, Wang AJ, Wu WM (2012b) Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere 89:1177–1182. doi:10.1016/j.chemosphere.2012.08.011

    Article  CAS  Google Scholar 

  • Zhang Y, Wu Z, Wang Q, Yang L, Li M, Lin ZQ, Bañuelos G (2014) Removal of Selenite from wastewater using microbial fuel cell inoculated with shewanella oneidensis MR-1. In: Bañuelos GS, Lin ZQ, Yin X (eds) Selenium in the environment and human health. Taylor & Francis, London, pp 210–211

    Google Scholar 

  • Zhao LX, Kong FY, Wang X, Wen Q, Sun Q, Wu Y (2009) Cr(VI)-containing wastewater treatment coupled with electricity generation using microbial fuel cell. Mod Chem Ind 29:37–39 + 41

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilasha Singh Mathuriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathuriya, A.S., Yakhmi, J.V. Microbial fuel cells to recover heavy metals. Environ Chem Lett 12, 483–494 (2014). https://doi.org/10.1007/s10311-014-0474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0474-2

Keywords

Navigation