Advertisement

Environmental Chemistry Letters

, Volume 12, Issue 3, pp 429–434 | Cite as

Microbes to clean indoor pollutants

  • Carla Boga
  • Erminia Del Vecchio
  • Luciano Forlani
  • Mario Franceschetti
Original Paper

Abstract

Formaldehyde is a dangerous indoor pollutant which is introduced in house by common objects such as furniture. Effective microorganisms have the very interesting ability to degrade some pollutants. Here, we tested the removal of formaldehyde and aromatic aldehydes using effective microorganisms including yeast, lactic acid bacteria, and photosynthetic bacteria. Formaldehyde was quantified by GC–MS of formaldehyde dinitrophenylhydrazone. Other aldehydes were analyzed by GC–MS. Results show that effective microorganisms remove 70–100 % of formaldehyde, benzaldehyde, and 4-methylbenzaldehyde in about a week. Experiments on chipboard panels indicate the possibility to decrease the amount of formaldehyde emission by furniture. This is the first report on the removal of formaldehyde by effective microorganisms, to our best knowledge.

Keywords

Formaldehyde Lactic Acid Bacterium Benzaldehyde Benzylic Alcohol Aromatic Aldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors thank REGEA Srl (Gubbio, Italy) and Alma Mater Studiorum–Università di Bologna (RFO funds) for financial support and Mrs. Yurie Orimoto (Punto EM srl) for a gift of effective microorganisms, gray ceramic tubes, and molasses.

References

  1. Adroer N, Casas C, de Mas C, Solà C (1990) Mechanism of formaldehyde biodegradation by Pseudomonas putida. Appl Microbiol Biotechnol 33:217–220CrossRefGoogle Scholar
  2. Amato P, Demeer F, Melaouhi A, Fontanella S, Martin-Biesse A-S, Sancelme M, Laj P, Delort A-M (2007) A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos Chem Phys 7:4159–4169. doi: 10.5194/acp-7-4159-2007 Google Scholar
  3. Aruoma OI, Deiana M, Rosa A, Casu V, Piga R, Peccagnini S, Dessì MA, Ke B, Liang Y-F, Higa T (2002) Assessment of the ability of the antioxidant cocktail-derived from fermentation of plants with effective microorganisms (EM-X) to modulate oxidative damage in the kidney and liver of rats in vivo: studies upon the profile of poly- and monounsaturated fatty acids. Toxicol Lett 135:209–217CrossRefGoogle Scholar
  4. Chui CH, Gambari R, Lau FY, Hau DKP, Wong RSM, Cheng GYM, Kok SHL, Higa T, Ke B, Chan ASC, Fong DWF, Tang JCO (2006) Antiangiogenic activity of a concentrated effective microorganism fermentation extract. Int J Mol Med 18:975–979Google Scholar
  5. Deiana M, Dessi MA, Ke B, Liang Y-F, Higa T, Gilmour PS, Jen L-S, Rahman I, Aruoma OI (2002) The antioxidant cocktail effective microorganism X (EM-X) inhibits oxidant-induced interleukin-8 release and the peroxidation of phospholipids in vitro. Biochem Biophys Res Commun 296:1148–1451CrossRefGoogle Scholar
  6. Detfler E, De Groot AC, Brinkmann J (2010) Determination of formaldehyde in formaldehyde-releaser patch test preparations. Contact Dermatitis 63:57–62. doi: 10.1111/j.1600-0536.2010.01708 CrossRefGoogle Scholar
  7. Emeis D, Anker W, Wittern K-P (2007) Quantitative 13C NMR spectroscopic studies on the equilibrium of formaldehyde with its releasing cosmetic preservatives. Anal Chem 79:2096–2100. doi: 10.1021/ac0619985 CrossRefGoogle Scholar
  8. Glancer-Šoljan M, Glancer-Šoljan M, Šoljan V, Dragičević TL, Čačić L (2001) Aerobic degradation of formaldehyde in wastewater from the production of melamine resins. Food technol biotechnol 39:197–202Google Scholar
  9. Goetz K, Hilterhaus L, Liese A (2011) Industrial application of oxidoreductase catalyzed reduction of ketones and aldehydes. In Drauz K, Groeger H, May O (eds) Enzyme catalysis in organic synthesis 3rd Edn. Wiley -VCH, Weinheim, pp 1205–1223. Doi: 10.1002/9783527639861.ch29
  10. Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76:237–248. doi: 10.1007/s00253-007-1002-0 CrossRefGoogle Scholar
  11. Gröger H, Hummel W, Borchert S, Kraußer M (2011) Reduction of ketones and aldehydes to alcohols. In Drauz K, Groeger H, May O (eds) Enzyme catalysis in organic synthesis 3rd Edn. Wiley-VCH, Weinheim, pp 1035–1110. Doi: 10.1002/9783527639861.ch26
  12. Hanhnenstein I, Hasse H, Kreiter CG, Maurer G (1994) 1H- and 13C-NMR-spectroscopic study of chemical equilibria in solutions of formaldehyde in water, deuterium oxide, and methanol. Ind Eng Chem Res 33:1022–1029. doi: 10.1021/ie00028a033 CrossRefGoogle Scholar
  13. Higa T (1991) Effective microorganisms: a biotechnology for mankind. In: Parr JF, Hornick SB, Whitman CE (eds) Proceedings of the first international conference on Kyusei nature farming. U.S Department of Agriculture, Washington D.C., USA, pp 8–14Google Scholar
  14. Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Centre Atami, Japan. pp 1–16. Available on the web. http://www.emturkey.com.tr/TR/dosya/1-314/h/54-parrhigabkltcf120on20em.pdf Accessed 31 Jan 2014
  15. Higa T, Wididana GN (1991) The concept and theories of effective microorganisms. In: Parr JF, Hornick SB, Whitman CE (eds) Proceedings of the first international conference on Kyusei nature farming. U.S Department of Agriculture, Washington, D.C., USA, pp 118–124Google Scholar
  16. Iannacone RL, Revukas AJ (1972) Method for stabilizing chromogenic test reagent for aldehyde. US Pat 3645696 AGoogle Scholar
  17. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2006) Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Humans, Int Agency Res Cancer, Lyon 88:39–325Google Scholar
  18. Kaszycki P, Koloczek H (2000) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha in a model wastewater system. Microbiol Res 154:289–296CrossRefGoogle Scholar
  19. Le Botlan DJ, Mechim BG, Martin GJ (1983) Proton and carbon-I 3 nuclear magnetic resonance spectrometry of formaldehyde in water. Anal Chem 55:587–591. doi: 10.1021/ac00254a041 CrossRefGoogle Scholar
  20. Lux MF, Keith E, Hsu TD, Drake HL (1990) Biotransformations of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol Lett 55:73–77CrossRefGoogle Scholar
  21. Monakhova YB, Kuballa T, Mildau G, Kratz E, Keck-Wilhelm A, Tschiersch C, Lachenmeier DW (2013) Formaldehyde in hair straightening products: rapid 1H NMR determination and risk assessment. Int J Cosm Sci 35:201–206. doi: 10.1111/ics.12027 CrossRefGoogle Scholar
  22. Monti D, Ottolina G, Carrea G, Riva S (2011) Redox reactions catalyzed by isolated enzymes. Chem Rev 111:4111–4140. dx.doi.org/  10.1021/cr100334x Google Scholar
  23. Nikolova P, Ward OP (1994) Reductive biotransformation of benzaldehyde derivatives by baker’s yeasts in non-conventional media: substrate hydrophobicity on the biocatalytic reaction. Biocatalysis 9:329–341CrossRefGoogle Scholar
  24. Sawicki E, Hauser TR, Stanley TW, Elbert W (1961) The 3-Methyl-2-benzothiazolone hydrazone test. sensitive new methods for the detection, rapid estimation, and determination of aliphatic aldehydes. Anal Chem 33:93–96. doi: 10.1021/ac60169a028 CrossRefGoogle Scholar
  25. Shalaby EA (2011) Prospects of effective microorganisms technology in wastes treatment in Egypt. Asian Pac J Trop Biomed 1:243–248. doi: 10.1016/S2221-1691(11)60035-X CrossRefGoogle Scholar
  26. Sivasubramanian S, Namasivayam SKR (2013) Evaluation of phenol degradation by effective microorganism (EM) technology with EM-1. Afr J Microbiol Res 7:4117–4122. doi: 10.5897/AJMR12.1077 Google Scholar
  27. Vogel AI (1989) VOGEL’s textbook of practical organic chemistry, 5th edn. Longman Scientific & Technical, Harlow, p 1218Google Scholar
  28. Wolverton BC, Wolverton JD (1993) Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J MS Acad Sci 38:11–15Google Scholar
  29. World Petrochemicals (WP) report on formaldehyde (37% solution), January 2011 available via http://www.ihs.com/products/chemical/planning/ceh/formaldehyde.aspx?pu=1&rd=chemihs

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carla Boga
    • 1
  • Erminia Del Vecchio
    • 2
  • Luciano Forlani
    • 1
  • Mario Franceschetti
    • 3
  1. 1.Department of Industrial ChemistryUniversity of BolognaBolognaItaly
  2. 2.Zola PredosaItaly
  3. 3.GubbioItaly

Personalised recommendations