Skip to main content
Log in

Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Aqueous catalysis is an innovative task for the sustainable chemical industry. The use of biodegradable catalysts from natural sources may lead to greener reactions. Here, we report the synthesis of coumarin by Knoevenagel condensation using choline chloride as catalyst. Results show that even 10% of choline chloride can catalyze Knoevenagel condensation to yield coumarin in good yields. Almost all reactions proceeded faster, cleaner and in higher yields in aqueous media. Reaction mechanisms are proposed. The choline chloride catalyst was recycled five times without activity or yield decrease. Therefore, the synthesis of coumarin by Knoevenagel condensation using choline chloride as catalyst is a promising alternative to previously used procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem 8:784

    Article  CAS  Google Scholar 

  • Abello S, Medina F, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE, Tichit D, Coq B (2004) Supported choline hydroxide (ionic liquid) as heterogeneous catalyst for aldol condensation reactions. Chem Commun 1096

  • Avalos M, Babiano R, Cintas P, Jim′enez JL, Palacios JC (2006) Greener media in chemical synthesis and processing. Angew Chem Int Ed 45:3904

    Google Scholar 

  • Burrell A, Del Sesto R, Baker S, McCleskey TM, Baker GA (2007) The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem 9:449

    Article  CAS  Google Scholar 

  • Clark JH, Macquarrie DJ (1998) Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem Commun 853

  • Dhokte AO, Khillare SL, Lande MK, Arbad BR (2011) Knoevenagel reaction in water catalyzed by mesoporous silica materials synthesized from industrial waste coal fly ash. J Kor Chem Soc 55:430

    Article  CAS  Google Scholar 

  • Drylie EA, Wragg DS, Parnham ER, Wheatley PS, Slawin AMZ, Warren JE, Morris RE (2007) Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. Angew Chem Int Ed 46:7839

    Article  Google Scholar 

  • Emilia T, Pedro V, Francisco S (2011) Knoevenagel reaction in [MMIM][MSO4]: synthesis of coumarins. Molecules 16:4379

    Article  Google Scholar 

  • Gorke J, Kazlauskas R (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 1235

  • Gowravaram G, Subba Reddy BV, Babu RS, Yadav JS (1998) LiCl catalyzed Knoevenagel condensation: comparative study of conventional method vs microwave irradiation. Chem Lett 27:773–774

    Google Scholar 

  • Ilgen F, Ott D, Kralisch D, Reil C, Palmbergera A, Konig B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11:1948

    Article  CAS  Google Scholar 

  • Li C (1993) Organic reactions in aqueous media—with a focus on carbon–carbon bond formation. Chem Rev 93:2023

    Article  CAS  Google Scholar 

  • Li YQ (2000) Potassium phosphate as a catalyst for the Knoevenagel condensation. J Chem Res 2000:524

  • Mirjafary Z, Saeidian H, Moghaddam FM (2009) Microwave-assisted synthesis of 3-substituted coumarins using ZrOCl2·8H2O as an effective catalyst. Trans C Chem Chem Eng 16:12

    Google Scholar 

  • Morales RC, Tambyrajah V, Jenkins PR, Avies DL, Abbott AP (2004) The regiospecific Fischer indole reaction in choline chloride·2ZnCl2 with product isolation by direct sublimation from the ionic liquid. Chem Commun 158

  • Murase T, Nishijima Y, Fujita M (2012) Cage-catalyzed Knoevenagel condensation under neutral conditions in water. J Am Chem Soc 134:162

    Article  CAS  Google Scholar 

  • O’Kennedy R, Thornes RD (1997) Coumarins: biology, applications and mode of action. Wiley, Chichester

    Google Scholar 

  • Phadtare SB, Shankarling GS (2010) Halogenation reactions in biodegradable solvent: efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride:urea). Green Chem 12:458

    Article  CAS  Google Scholar 

  • Pirkle WH, Pochapsky TC, Mahler GS, Corey DE, Reno DS, Alessi DM (1986) Useful and easily prepared chiral stationary phases for the direct chromatographic separation of the enantiomers of a variety of derivatized amines, amino acids, alcohols, and related compounds. J Org Chem 51:4991

    Article  CAS  Google Scholar 

  • Ranu BC, Jana R (2006) Ionic liquid as catalyst and reaction medium—a simple, efficient and green procedure for Knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid. Eur J Org Chem 2006:3767

  • Senapati KK, Borgohain C, Phukan P (2011) Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J Mol Catal A: Chem 339:24

    Article  CAS  Google Scholar 

  • Sidhu A, Rai M (2008) Reaction of ethyl cyanoacetate with benzal-4-acetylanilines: an unexpected result. Ind J Chem 47:778

    Google Scholar 

  • Soleimani E, Mehdi Khodaei M, Batooie N, Baghbanzadeh M (2011) Water-prompted synthesis of alkyl nitrile derivatives via Knoevenagel condensation and Michael addition reaction. Green Chem 13:566

    Article  CAS  Google Scholar 

  • Trost BM (1991) Comprehensive organic synthesis, vol 2. Pergamon, Oxford, pp 341–394

    Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772

    Article  CAS  Google Scholar 

  • Yadav J, Subba Reddy BV, Basak A, Visali B, Narsaiah AV, Nagaiah K (2004) Phosphane-catalyzed Knoevenagel condensation: a facile synthesis of α-cyanoacrylates and α-cyanoacrylonitriles Eur J Org Chem 2004:546

  • Zhou Z, Sun Y (2011) Simple, efficient, and green procedure for the Knoevenagel condensation catalyzed by ethylenediammonium diacetate under solvent-free conditions. Synth Commun 41:3162

    Article  CAS  Google Scholar 

  • Zhu A, Jiang T, Han B, Zhang J, Xie Y, Ma X (2007) Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem 9:169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to SAIF IIT, Bombay, and Institute of Science, Mumbai, for recording elemental analysis and 1HNMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati Subray Shankarling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phadtare, S.B., Shankarling, G.S. Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ Chem Lett 10, 363–368 (2012). https://doi.org/10.1007/s10311-012-0360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0360-8

Keywords

Navigation