Skip to main content

Advertisement

Log in

A New and Efficient Electro Organic Method for Synthesis of Methyl Cinnamate Derivatives via Heck Reaction Under Green Conditions

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In recently years, the field of organic chemistry has seen a growing interest in the development of environmentally friendly and efficient synthetic methods. In this context, we introduce a new electro-organic approach for the synthesis of methyl cinnamate derivatives through the Heck reaction, carried out under green conditions. The conventional Heck reaction, widely used for synthesizing diverse compounds, suffers from drawbacks like the use of toxic solvents, harsh reaction conditions, and the generation of waste. To address these challenges, we employed an electrochemical method, offering a more sustainable alternative. Our electro-organic process utilized a two-electrode setup with easily available anode and cathode materials. Through the application of an appropriate potential difference, both the aryl halide and olefin substrates were electrochemically activated, leading to the formation of the desired methyl cinnamate derivatives. This innovative approach offers several significant advantages. Firstly, it eliminates the need for toxic catalysts, reducing the environmental impact related to waste disposal. Secondly, the mild reaction conditions allow for the use of a broad range of functional groups, enabling the synthesis of diverse methyl cinnamate derivatives. Moreover, the electrochemical approach demonstrates exceptional selectivity and efficiency, resulting in high product yields. Additionally, the method is easily scalable, making it suitable for large-scale production. The affordability and accessibility of the electrode materials further contribute to the sustainability of the process. In summary, our electro-organic method represents a greener and more efficient strategy for synthesizing methyl cinnamate derivatives via the Heck reaction. It not only addresses the limitations of conventional methods but also aligns with the principles of sustainable chemistry. We expect this novel methodology to find widespread applications in the synthesis of various important compounds, promoting the development of more sustainable chemical processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Jagtap S (2017) Catalysts 7:267

    Article  Google Scholar 

  2. Shibasaki M, Vogl EM, Ohshima T (2004) Adv Synth Catal 346:1533–1552

    Article  CAS  Google Scholar 

  3. Link JT (2004) Org React 60:157–561

    Google Scholar 

  4. Zou Y, Zhou JS (2014) Chem Commun 50:3725–3728

    Article  CAS  Google Scholar 

  5. Wu X-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M (2010) J Am Chem Soc 132:14596–14602

    Article  CAS  PubMed  Google Scholar 

  6. Trzeciak AM, Ziółkowski JJ (2005) Coord Chem Rev 249:2308–2322

    Article  CAS  Google Scholar 

  7. Prashad M (2004) Organometall Process Chem. 4:181–203

    Article  Google Scholar 

  8. Burello E, Rothenberg G (2003) Adv Synth Catal 345:1334–1340

    Article  CAS  Google Scholar 

  9. D Paul S Das S Saha H Sharma RK Goswami 2021 Eur J Org Chem 2021 2057 2076

    Article  CAS  Google Scholar 

  10. Dounay AB, Overman LE (2003) Chem Rev 103:2945–2964

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh T (2019) ChemistrySelect 4:4747–4755

    Article  CAS  Google Scholar 

  12. Devendar P, Qu R-Y, Kang W-M, He B, Yang G-F (2018) J Agric Food Chem 66:8914–8934

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhu, W. Dong and W. Tang, Adv. Agrochem.

  14. Torborg C, Beller M (2009) Adv Synth Catal 351:3027–3043

    Article  CAS  Google Scholar 

  15. M. OESTREICH, .

  16. Crisp GT (1998) Chem Soc Rev 27:427–436

    Article  CAS  Google Scholar 

  17. De Vries JG (2001) Can J Chem 79:1086–1092

    Article  Google Scholar 

  18. Kong K, Enquist JA Jr, McCallum ME, Smith GM, Matsumaru T, Menhaji-Klotz E, Wood JL (2013) J Am Chem Soc 135:10890–10893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biffis A, Centomo P, Del Zotto A, Zecca M (2018) Chem Rev 118:2249–2295

    Article  CAS  PubMed  Google Scholar 

  20. Madasu SB, Vekariya NA, Kiran MH, Gupta B, Islam A, Douglas PS, Babu KR (2012) Beilstein J Org Chem 8:1400–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakano S, Hamada Y, Nemoto T (2018) Tetrahedron Lett 59:760–762

    Article  CAS  Google Scholar 

  22. Monaco A, Szulc BR, Rao ZX, Barniol-Xicota M, Sehailia M, Borges BMA, Hilton ST (2017) Chem Eur J 23:4750–4755

    Article  CAS  PubMed  Google Scholar 

  23. Park KHK, Chen DY-K (2018) Chem Commun 54:13018–13021

    Article  CAS  Google Scholar 

  24. Lu Z, Yang M, Chen P, Xiong X, Li A (2014) Angew Chemie 126:14060–14064

    Article  Google Scholar 

  25. Choi J, Kim H, Park S, Tae J (2013) Synlett 24:379–382

    Article  CAS  Google Scholar 

  26. Xu L, Wang C, Gao Z, Zhao Y-M (2018) J Am Chem Soc 140:5653–5658

    Article  CAS  PubMed  Google Scholar 

  27. Fu C, Zhang Y, Xuan J, Zhu C, Wang B, Ding H (2014) Org Lett 16:3376–3379

    Article  CAS  PubMed  Google Scholar 

  28. Mizoroki T, Mori K, Ozaki A (1971) Bull Chem Soc Jpn 44:581

    Article  CAS  Google Scholar 

  29. Heck RF, Nolley JP Jr (1972) J Org Chem 37:2320–2322

    Article  CAS  Google Scholar 

  30. Gutmann B, Glasnov TN, Razzaq T, Goessler W, Roberge DM, Kappe CO (2011) Beilstein J Org Chem 7:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiao K-J, Xing Y-K, Yang Q-L, Qiu H, Mei T-S (2020) Acc Chem Res 53:300–310

    Article  CAS  PubMed  Google Scholar 

  32. Kärkäs MD (2018) Chem Soc Rev 47:5786–5865

    Article  PubMed  Google Scholar 

  33. Mohammadi AA, Makarem S, Ahdenov R, Notash NA (2020) Mol Divers 24:763–770

    Article  CAS  PubMed  Google Scholar 

  34. Raya I, Altimari US, Alami BG, Srikanth S, Gatea MA, Romero-Parra RM, Barboza-Arenas LA, Mustafa YF (2023) J Mol Struct. 5:136271

    Article  Google Scholar 

  35. Laudadio G, De Smet W, Struik L, Cao Y, Noël T (2018) J Flow Chem 8:157–165

    Article  PubMed  PubMed Central  Google Scholar 

  36. Watts K, Baker A, Wirth T (2015) J Flow Chem 4:2–11

    Article  Google Scholar 

  37. O’Brien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG (2014) Angew Chemie Int Ed 53:11868–11871

    Article  Google Scholar 

  38. Palasz PD, Utley JHP, Hardstone JD (1984) J Chem Soc Perkin Trans 2:807–813

    Article  Google Scholar 

  39. Ucheniya K, Chouhan A, Yadav L, Jat PK, Badsara SS (2023) J Org Chem 88:6096–6107

    Article  CAS  PubMed  Google Scholar 

  40. Pollok D, Waldvogel SR (2020) Chem Sci 11:12386–12400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biddinger EJ, Modestino MA (2020) Electrochem Soc Interface 29:43

    Article  CAS  Google Scholar 

  42. Ahdenov R, Mohammadi AA, Makarem S, Taheri S, Mollabagher H (2022) Heterocycl Commun 28:67–74

    Article  CAS  Google Scholar 

  43. Valentini F, Ferlin F, Lilli S, Marrocchi A, Ping L, Gu Y, Vaccaro L (2021) Green Chem 23:5887–5895

    Article  CAS  Google Scholar 

  44. Hochberger-Roa F, Cortés-Mendoza S, Gallardo-Rosas D, Toscano RA, Ortega-Alfaro MC, López-Cortés JG (2019) Adv Synth Catal 361:4055–4064

    Article  CAS  Google Scholar 

  45. Guzman JD, Mortazavi PN, Munshi T, Evangelopoulos D, McHugh TD, Gibbons S, Malkinson J, Bhakta S (2014) Medchemcomm 5:47–50

    Article  CAS  Google Scholar 

  46. Ojha S, Panda N (2022) Org Biomol Chem 20:1292–1298

    Article  CAS  PubMed  Google Scholar 

  47. Kochurin MA, Ismagilova AR, Zakusilo DN, Khoroshilova OV, Boyarskaya IA, Vasilyev AV (2022) New J Chem 46:12041–12053

    Article  CAS  Google Scholar 

  48. Chitsomkhuan S, Buakaew S, Samec JSM, Chuawong P, Kuntiyong P (2022) Synlett 33:1353–1356

    Article  Google Scholar 

  49. Yoshioka E, Takahashi H, Kubo A, Ohno M, Watanabe F, Shiono R, Miyazaki Y, Miyabe H (2022) Synthesis (Stuttg) 54:5520–5528

    Article  CAS  Google Scholar 

  50. Kumar A, Tateyama S, Yasaki K, Ali MA, Takaya N, Singh R, Kaneko T (2016) Polymer (Guildf) 83:182–189

    Article  CAS  Google Scholar 

  51. Yoshioka E, Inoue M, Nagoshi Y, Kobayashi A, Mizobuchi R, Kawashima A, Kohtani S, Miyabe H (2018) J Org Chem 83:8962–8970

    Article  CAS  PubMed  Google Scholar 

  52. Mahmoudi H, Valentini F, Ferlin F, Bivona LA, Anastasiou I, Fusaro L, Aprile C, Marrocchi A, Vaccaro L (2019) Green Chem 21:355–360

    Article  CAS  Google Scholar 

  53. Mamidala R, Mukundam V, Dhanunjayarao K, Venkatasubbaiah K (2015) Dalt Trans 44:5805–5809

    Article  CAS  Google Scholar 

  54. Brizzi G, Puzzarini C, Perrin A, Orphal J, Willner H, Garcia P (2005) J Mol Struct 742:37–41

    Article  CAS  Google Scholar 

  55. Etzkorn FA, Ferguson JL (2023) Angew Chemie Int Ed 62:e202209768

    Article  CAS  Google Scholar 

  56. Martínez J, Cortés JF, Miranda R (2022) Processes 10:1274

    Article  Google Scholar 

  57. Horváth IT, Anastas PT (2007) Chem Rev 107:2167–2168

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported via funding from Prince Sattan bin Abdulaziz University project number (PSAU/2023/R/1444)

Author information

Authors and Affiliations

Authors

Contributions

RHA, SISA, SSA write main manuscript SSA, AHA prepared figures, AH prepared tables. Writing - Original manuscript Draft, Review, and Editing: MKA. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Sulieman Ibraheem Shelash Al-Hawary or Sherzod Shukhratovich Abdullaev.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 516 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althomali, R.H., Al-Hawary, S.I.S., Abdullaev, S.S. et al. A New and Efficient Electro Organic Method for Synthesis of Methyl Cinnamate Derivatives via Heck Reaction Under Green Conditions. Catal Surv Asia 28, 200–208 (2024). https://doi.org/10.1007/s10563-023-09418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09418-7

Keywords

Navigation