Skip to main content

Advertisement

Log in

Arsenic uptake by plants and possible phytoremediation applications: a brief overview

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

This review focuses the behaviour of arsenic in plant–soil and plant–water systems, arsenic–plant cell interactions, phytoremediation, and biosorption. Arsenate and arsenite uptake by plants varies in different environment conditions. An eco-friendly and low-cost method for arsenic removal from soil–water system is phytoremediation, in which living plants are used to remove arsenic from the environment or to render it less toxic. Several factors such as soil redox conditions, arsenic speciation in soils, and the presence of phosphates play a major role. Translocation factor is the important feature for categorising plants for their remediation ability. Phytoremediation techniques often do not take into account the biosorption processes of living plants and plant litter. In biosorption techniques, contaminants can be removed by a biological substrate, as a sorbent, bacteria, fungi, algae, or vascular plants surfaces based on passive binding of arsenic or other contaminants on cell wall surfaces containing special active functional groups. Evaluation of the current literature suggests that understanding molecular level processes, and kinetic aspects in phytoremediation using advanced analytical techniques are essential for designing phytoremediation technologies with improved, predictable remedial success. Hence, more efforts are needed on addressing the molecular level behaviour of arsenic in plants, kinetics of uptake, and transfer of arsenic in plants with flowing waters, remobilisation through decay, possible methylation, and volatilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental clean up. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Ahmann D, Krumholz LR, Hemond HF, Lovley DR, Morel FMM (1997) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ Sci Technol 31(10):2923–2930

    Article  CAS  Google Scholar 

  • Aksu Z, Kutsal T, Giia S, Haeiosmanoglu N, Gholaminejad M (1991) Investigation of biosorption of Cu (II), Ni (II) and Cr(VI) ions to activated sludge bacteria. Environ Technol 12:915–921

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Ali W et al (2009) Arsenite transport in plant. Cell Mol Life Sci 66:2329–2339

    Article  CAS  Google Scholar 

  • Andrews P, Cullen WR, Polishchuk E (2000) Arsenic and antimony biomethylation by Scopulariopsis brevicaulis: interaction of arsenic and antimony compounds. Environ Sci Technol 34(11):2249–2253

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Brick RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulator and excluders—strategies in response of plant to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail—a further step in understanding metal hyper accumulation? New Phytol 155:1–7

    Article  Google Scholar 

  • Benson LM, Porter EK, Peterson PJ (1981) Arsenic accumulation, tolerance and genotypic variation in plants on arsenical mine wastes in SW England. J Plant Nutr 3:655–666

    Article  CAS  Google Scholar 

  • Berg B, Berg B, McClaugherty C (eds) (2003) Plant litter, decomposition, humus formation, carbon sequestration. Springer, Heidelberg, p 286

    Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of as-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water. Water Res Dev 13:79–92

    Article  Google Scholar 

  • Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Sarkar B (2002) Arsenic in the environment: a global perspective, chap 6. In: Sarkar B (ed) Heavy metals in the environment. Marcel Dekker, New York, pp 147–215

    Google Scholar 

  • Bondada BR, Ma LQ (2003) Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In: Chandra S, Srivastava M (eds) Pteridology in the new millennium. Kluwer, The Netherlands, pp 397–420

    Google Scholar 

  • Bondada BR, Underhill RS, Ma LQ, Davidson MR, Guyodo Y, Duran RS (2007) Spatial distribution, localization and speciation of arsenic in the hyperaccumulating fern (Pteris vittata L.). In: Bhattacharya P, Mukherjee AB, Loeppert RH (eds) Arsenic in soil and groundwater environments: trace metals and other contaminants in environment, vol 9. Elsevier Book Series. pp 299–314

  • Bundschuh J, García ME, Birkle P, Cumbal LH, Bhattacharya P, Matschullat J (2009) Occurrence of health effects and remediation of arsenic in ground waters of Latin America. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharja P, Matschullat J, Mukherjee AB (eds) Natural arsenic in ground waters of Latin America. CRC Press, Boca Raton, pp 3–15

    Google Scholar 

  • Caille N, Zhao FJ, McGrath SP (2004) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761

    Article  CAS  Google Scholar 

  • Chandra KS, Kamala CT, Chary NS, Mukherjee AB (2007) Arsenic accumulation by Thalinum cuneifolium: application for phytoremediation of arsenic-contaminated soils of Patancheru, Hyderabad, India. In: Bhattacharaya P, Mukherjee AB, Bundschuh B, Zevenhoven R, Loeppert RH (eds) Arsenic in groundwater and environment: trace metals and other contaminants in the environment, vol 9. Elsevier, Amsterdam, pp 315–338

    Google Scholar 

  • Chang JS, Yoon IH, Kim KW (2009) Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecol Ind 9:1275–1279

    Article  CAS  Google Scholar 

  • Chowdhury K, Biswas BK, Chowdhury TR, Samanta G, Mandal K, Basu C, Chanda CR, Lodh D, Saha KC, Mukherjee SK (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  Google Scholar 

  • Cox DP, Alexander D (1973) Effect of phosphate and other anions on trimethylarsine formation by Candida humicola. Appl Microbiol 25(3):408–413

    CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Vitro Cell Dev Biol 29:207–212

    Article  Google Scholar 

  • Dabrowska BB, Vithanage M, Gunaratna KR, Mukherjee AB, Bhattacharya P (2012) Bioremediation of arsenic in contaminated terrestrial and aquatic environments. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world. Vol 2: remediation of air and water pollution, Springer, pp 475–509. doi:10.1007/978-94-007-2439-6_12

  • Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic containing solution using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710

    Article  CAS  Google Scholar 

  • Del Rio M, Font R, Conceptión A, Vélez D, Montoro R, Bailón A, de Haro M (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Azalcóllar mine. J Biotech 98:125–137

    Article  Google Scholar 

  • Dixon HBF (1997) The biological action of arsenic acids especially as phosphate analogues. Adv Inorg Chem 44:127–191

    Google Scholar 

  • Doyle MO, Otte ML (1997) Organism-induced accumulation of iron, zinc and arsenic in wetland soil. Eviron Pollut 96:1–11

    Article  CAS  Google Scholar 

  • Febrianto J, KosasihSunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mat 162(2–3):616–645

    Article  CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford, p 614

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (2002) Volatilisationofarsenic. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  • Franseconi K, Visootiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  Google Scholar 

  • Geng CN, Zhu YG, Tong YP, Smith SE, Smith FA (2006) Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticumaestivum L.). Chemosphere 62:608–615

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T (2003) Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res 37(20):4945–4953

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A rewiev on phytoremediation of heavy metals and utilization of it’s by products. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Gonzaga SMI, Santos JAG, Ma LQ (2006) Arsenic phyto extraction and hyperaccumulation by fern species. Sci Agric 63(1):90

    Article  CAS  Google Scholar 

  • Greger M (2005) Influence of willow (Salix viminalis L.) roots on soil metal chemistry: effects of clones with varying metal uptake potential. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the rhizosphere. Elsevier, Amsterdam, pp 301–312

    Chapter  Google Scholar 

  • Hansen HK, Ribeiro A, Mateus M (2006) Biosorption of arsenic(V) with Lessonia nigrescens. Min Eng 19:486–490

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brown field soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157(10):2654–2662

    Article  CAS  Google Scholar 

  • Heikens A, Panaullah GM, Meharg AA (2007) Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety. Rev Environ Contam Toxicol 189:43–87

    Article  CAS  Google Scholar 

  • Hoffman T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima baker to tolerate and accumulate As and Pb. Eng Life Sci 4(1):61–65

    Article  CAS  Google Scholar 

  • Hokura A et al (2006) Arsenic distribution and speciation in an arsenic hyperaccumulator fern by X-ray spectrometry utilizing synchrotron radiation source. J Anal At Spectrom 21:321–328

    Article  CAS  Google Scholar 

  • Huysmans KD, Frankenberger WT (1991) Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci Total Environ 105:13–28

    Article  CAS  Google Scholar 

  • Irtelli B, Navari-Izzo A (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303:105–113

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements ion soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Knudson JA, Meikle T, De Luca TH (2003) Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wild rye. J Environ Qual 32:2001–2006

    Article  CAS  Google Scholar 

  • Koivula MP, Kujala KK, Rönkkömäki H, Mäkelä M (2009) Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers. J Hazard Mat 164(1):345–352

    Article  CAS  Google Scholar 

  • Kumari P, Sharma P, Srivastava S, Srivastava MM (2006) Bio sorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. Int J Miner Process 132(78):131–139

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Li H, Wu C, Ye ZH, Wu SC, Wu FY, Wong MH (2011) Uptake kinetics of different arsenic species in lowland and upland rice colonized with Glomus intraradices. J Hazard Mater 194:414–421

    Article  CAS  Google Scholar 

  • Lombi E, Zhao F, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195

    Article  CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    Article  CAS  Google Scholar 

  • Luongo T, Ma LQ (2005) Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant Soil 277:117

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KMM, Tu C, Zhang W, Cai Y, Kenence ED (2001) A fern that hyperaccumulates As. Nat (Lond) 409:579

    Article  CAS  Google Scholar 

  • Mandal BK, Roychowdhury T, Samanta G, Basu K, Chowdhury P et al (1996) Arsenic in groundwater in seven districts of West Bengal, India: the biggest arsenic calamity in the world. Curr Sci 70(11):976–986

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Massechelyn PH, Patrick WH Jr (1994) Selenium, arsenic, and chromium redox chemistry in wetland soils and sediments. In: Adriano DC (ed) Biogeochemistry of trace elements. Science and Technology Letters, Northwood, pp 615–625

    Google Scholar 

  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647

    Article  CAS  Google Scholar 

  • Mcafee BJ, Gould WD, Nedeau JC, da Costa ACA (2001) Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopusoryzae. Sep Sci Technol 36(14):3207–3222

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents: a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Serrano VG, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interf Sci 310(1):57–73

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E et al (2010) The fate of arsenic in soils adjacent an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J Soils Sediment 10:301–312

    Article  CAS  Google Scholar 

  • Mukherjee S, Kumar S (2005) Adsorptive uptake of arsenic (V) from water by aquatic fern Salvinia natans. J Water Supply Res Technol—AQUA 54(1):47–53

    CAS  Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97(3):483–487

    Article  CAS  Google Scholar 

  • Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (2006) Managing arsenic in the environment: from soil to human health. CSIRO, Collingwood, p 747

    Google Scholar 

  • Namgay T, Singh B, Singh BP (2009) Plant availability of arsenic and cadmium as influenced by biochar application to soil. In: 19th World congress of soil science, soil solutions for a changing world, 1–6 August 2010, Brisbane

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolated of alcaligenes. J Appl Bacteriol 41:295–305

    Article  CAS  Google Scholar 

  • Pandey PK, Khare RN, Sharma S, Pandey M (1999) Arsenicosis and deteriorating ground water quality: unfolding crisis in central East Indian region. Curr Sci 77:686–693

    CAS  Google Scholar 

  • Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637

    Article  CAS  Google Scholar 

  • Peuke H, Rennenberg H (2005) Phytoremediation. EMBO Rep 6(6):497–501

    Article  CAS  Google Scholar 

  • Polya DA, Charlet L (2009) Rising arsenic risk? Nature Geoscience 2:383–384. doi:10.1038/ngeo537

    Google Scholar 

  • Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Sci Total Environ 4:365–371

    Article  CAS  Google Scholar 

  • Prasad MNV (2008) Trace element in traditional healing plants-remedies or risk. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 137–160

    Chapter  Google Scholar 

  • Quek SY, Al Duri B, Wase DAJ, Forster CF (1998) Coir as a biosorbent of copper and lead. Process Saf Environ Prot 76(B1):50–54

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawaa H, Ueda K, Makia T, Rahman MM (2008) Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinianatans L.). Chem Eng J 145:179–184

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Randall JM, Bermann RL, Garrett V, Waiss ACJ (1974) Use of bark to remove heavy metal ions from waste solutions. For Prod J 24(9):80–84

    CAS  Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166(2–3):1050–1059

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  Google Scholar 

  • Rocovich SE, West DA (1975) Arsenic tolerance in populations of the grass Andropogon scoparius. Science 188:187–188

    Article  Google Scholar 

  • Ross SM, Kaye KJ (1994) The meaning of metal toxicity in soil-plant systems. In: Ross SM (ed) Toxic metals in soil-plant systems. Willey, New York, pp 27–61

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Sarkar D, Markis KC, Vandanapu V, Datta R (2007) Arsenic immobilization in soil amended with drinking water treatment residuals. Environ Pollut 146(2):414–419

    Article  CAS  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 14:167–192

    Article  Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separ Sci Technol 38(9):2039–2053

    Article  CAS  Google Scholar 

  • Sekhar KC, Kamala CT, Chary NS, Mukherjee AB (2007) Arsenic accumulation by Talinum cuneifolium: application for phytoremediation of arsenic-contaminated soils of Patancheru, Hyderabad, India. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation (trace metals and other contaminants in environment), vol 9. Elsevier, Amsterdam, pp 315–338

    Chapter  Google Scholar 

  • Senthilkumaar S, Bharathi S, Nithyanandhi D, Subburam V (2000) Biosorption of toxic heavy metals from aqueous solutions. Bioresour Technol 75(2):163–165

    Article  CAS  Google Scholar 

  • Siedlecka A, Tukendorf A, Skórzyńska-Polit E, Maksymiec W, Wójcik M, Baszyński T, Krupa Z (2001) Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and poaceae; other than Btassicaceae). In: Prasad MNV (ed) Metals in the environment. Marcel Dekker, New York, pp 171–217

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 1:517–568

    Article  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Pb, and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2005) Effects of different wetland plant species on fresh unweathered sulphidic mine tailings. Plant Soil 276(1–2):251–261

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2006) Release of metals and arsenic from various mine tailings by Eriophorum angustifolium. Plant Soil 289(1–2):199–210

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q-X, Liu W-T, Wang L (2009) Joint effects of arsenic, cadmium on plant growth and metal bioaccumulation: a potential Cd hyperaccumulator and As-excluder Bidenspilosa L. J Hazard Mater 161(2–3):808–814

    Article  CAS  Google Scholar 

  • Terry T, Zayed AM (1994) Sellenium volatilization in plants. In: Frankenberger Jr, WT Benson S (eds) Sellenium in the environment. Marcel Dekker, New York, pp 343–367

    Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Nandita Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trend Biotech 25(4):159–165

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and Forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  Google Scholar 

  • Tyrovola K, Nikolaidis NP (2009) Arsenic mobility and stabilization in top soils. Water Res 43:1589–1596

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Bonaventura RAR (2006) Equilibrium and kinetics modelling of Cd(II) biosorption by algae gelidium and agar extraction algal waste. Water Res 40(2):291–302

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250

    Article  CAS  Google Scholar 

  • Wallschläger D, London J (2008) Determination of methylated arsenic–sulfur compounds in groundwater. Environ Sci Technol 42(1):228–234

    Article  CAS  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pterisvittata, uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  Google Scholar 

  • Watanbe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excludor plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  Google Scholar 

  • WHO (1993) Arsenic in drinking water, world health organisation factsheet 210. World Health Organisation, Geneva

    Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pterisvittata L. Environ Sci Technol 43:8488–8495

    Article  CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A (1991) Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut 57:269–278

    Article  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

  • Zhu N, Rosen H (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vithanage, M., Dabrowska, B.B., Mukherjee, A.B. et al. Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10, 217–224 (2012). https://doi.org/10.1007/s10311-011-0349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0349-8

Keywords

Navigation