Skip to main content
Log in

Changes in chemical forms of lead in temperate and semiarid soils in sterile and unsterile conditions

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Sequential extraction has been used as a suitable method for fractionation of chemical forms of trace elements and study of their plant availability. Surface soils were sampled from Guilan and Hamadan provinces in north and northwest of Iran with temperate and semiarid climates. The chemical forms of Pb in the Pb(NO3)2-treated (400 μg Pb g−1) soils have been studied in solid state incubation (FC) at 27°C in sterile and unsterile conditions. After 20 min and 3600 h a sequential extraction scheme was also used to fractionate Pb of incubated samples into soluble-exchangeable (Sol-Exch), carbonates associated (ACar), organic matter associated (AOM), Mn oxide associated (AMnOx), Fe oxide associated (AFeOx), and residual (Res) forms. Temperate soil samples had higher clay content, cation exchange capacity (CEC), dichromate oxidable organic carbon (OC), total Kjeldahl-nitrogen (TN), biological activity, amorphous and crystalline Fe and Al, but semiarid soil samples had higher sand content, pH, equivalent calcium carbonate (ECC), available P and K. Soil lead fractionation revealed that in both groups of soils Pb largely changed to exchangeable, carbonates associated and organic associated forms after 20 min. The chemical forms of Pb differed widely among soils after 3600-h incubation. The conversion rate of Pb from more available forms to less available forms was higher in temperate soils with higher Fe–Mn oxides and OM contents compared to semiarid soils. In temperate soils after 3600-h incubation, greater content of Pb was observed in Res (68%), AOM (14%), ACar (7%), and AMnOx (5%) fractions. However, in semiarid soils greater content of Pb was observed in Res (61%), ACar (16%), Sol-Exch (8%), and AOM (8%) fractions. The sum of AMnOx and AFeOx chemical forms for Pb in semiarid soils compared to temperate soils was lower. It was only 7% against 9% in temperate soils. Soil microorganisms in unsterile soils had significant effect on AOM, AFeOx and Res fractions of Pb. They not only increased AOM and AFeOx fractions of Pb in soils but also decreased Res fraction of Pb significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth CC, Pilon JL, Gassman PL, Van Der Sluys WG (1994) Cobalt, cadium and lead sorption to hydrous iron oxide: residence time effect. Soil Sci Soc Am J 58:1615–1623

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Harcourt Brace & Company, London

    Google Scholar 

  • Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A, Rico MI (2006) Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 132:450–463. doi:10.1016/j.geoderma.2005.06.009

    Article  CAS  Google Scholar 

  • Amdur MO, Doull J, Blaasen C (1991) Casarett and Doull’s toxicology, the basic science of poisons. Pergamon press, New York, vol 63, pp 9–643

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:214–221

    Google Scholar 

  • Backes CA, McLaren RG, Rate AW, Swift RS (1995) Kinetics of cadium and cobalt desorption from iron and manganese oxides. Soil Sci Soc Am J 59:778–785

    Article  CAS  Google Scholar 

  • Bataillard P, Cambier P, Picot C (2003) Short-term transformation of lead and cadmium compounds in soil after contamination. Eur J Soil Sci 54:365–376. doi:10.1046/j.1365-2389.2003.00527.x

    Article  CAS  Google Scholar 

  • Bower CA, Reitmeir RF, Fireman M (1952) Exchangeable cation analysis of saline and alkali soils. Soil Sci 73:251–261. doi:10.1097/00010694-195204000-00001

    Article  CAS  Google Scholar 

  • Brallier S, Harrison RB, Henry CL, Dongsen X (1996) Liming effects on availability of Cd, Cu, Ni, and Zn in a soil amended with sewage sludge 16 years previously. Water Air Soil Pollut 86:195–206. doi:10.1007/BF00279156

    Article  CAS  Google Scholar 

  • Brierley L, Brierley JA, Davidson MS (1989) Applied microbial processes for metals recovery and removal from wastewater. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 359–382

    Google Scholar 

  • Brummer GW, Gerth J, Tiller KG (1988) Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. 1. Adsorption and diffusion of metals. J Soil Sci 39:37–52. doi:10.1111/j.1365-2389.1988.tb01192.x

    Google Scholar 

  • Catlett KM, Heilb DM, Lindsay WL, Ebingerd MH (2002) Soil chemical properties controlling zinc2+ activity in 18 Colorado soils. Soil Sci Soc Am J 66:1182–1189

    Article  CAS  Google Scholar 

  • Davies NA, Hodson ME, Black S (2003) The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test. Environ Pollut 121:55–61. doi:10.1016/S0269-7491(02)00207-5

    Article  CAS  Google Scholar 

  • Eick MJ, Peak JD, Bradey PV, Pesek JD (1999) Kinetics of lead adsorption and desorption on goethite: residence time effect. Soil Sci 164:28–39. doi:10.1097/00010694-199901000-00005

    Article  CAS  Google Scholar 

  • Ford RG, Scheinhost AC, Scheckel KG, Sparks DL (1999) The link between clay mineral weathering and the stabilization of Ni surface precipitates. Environ Sci Technol 33:3140–3144. doi:10.1021/es990271d

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Method of soil analysis, part 1: Physical and mineralogical methods. Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Glover LJII, Eick MJ, Brady PV (2002) Desorption kinetics of cadmium and lead from goethite: influence of time and organic acids. Soil Sci Soc Am J 66:797–804

    Article  CAS  Google Scholar 

  • Gode G, Pehlivan E (2006) Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J Hazard Mater B136:330–337. doi:10.1016/j.jhazmat.2005.12.021

    Article  CAS  Google Scholar 

  • Guibal E, Roulph ND, Cloirec PL (1992) Uranium biosorption by a filamentous fungus Mucor Miehei: pH effect on mechanisms and performances of uptake. Water Res 26:1139–1145. doi:10.1016/0043-1354(92)90151-S

    Article  CAS  Google Scholar 

  • Harter RD (1979) Adsorption of copper and lead by Ap and B2 horizons of several northeastern United States soils. Soil Sci Soc Am J 43:679–683

    Article  CAS  Google Scholar 

  • Harter RD (1983) Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Sci Soc Am J 47:47–51

    Article  CAS  Google Scholar 

  • Hesse PR (1971) A text book of soil chemical analysis. John Murray, London

    Google Scholar 

  • Hinds A, Lowe LE (1980) Ammonium-N determination. Soil nitrogen. Berthelot reaction. Soil Sci Plant Anal 11:469–475. doi:10.1080/00103628009367054

    CAS  Google Scholar 

  • Hooda PS, Alloway BJ (1993) Effect of time and temperature on the bioavailability of Cd and Pb from sludge-amended soils. J Soil Sci 44:97–110. doi:10.1111/j.1365-2389.1993.tb00437.x

    Article  CAS  Google Scholar 

  • Jackson ML (1958) Soil Chemical Analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Jalali M, Khanlari ZV (2007) Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 143:26–40. doi:10.1016/j.geoderma.2007.10.002

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace element in soils and plants, 2nd edn. CRC Press, USA, p 413

    Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption–an alternative treatment option for heavy metal bearing wastewater: a review. Bioresour Technol 53:195–206. doi:10.1016/0960-8524(95)00072-1

    Article  CAS  Google Scholar 

  • Leoppert RH, Inskeep WP (1996) Iron. In: Sparks DL (ed) Methods of soil analysis. Part 3, Chemical methods. Madison, Wisconsin, USA, pp 639–664

    Google Scholar 

  • Leoppert RH, Suarez GL (1996) Carbonates and Gypsum. In: Sparks DL (ed) Methods of soil analysis. Part 3, Chemical methods. Madison, Wisconsin, USA, pp 437–474

    Google Scholar 

  • Li Z, Shuman LM (1996) Redistribution of forms of zinc, cadmium, and nickel in soils treated with EDTA. J Sci Total Environ 191:95–107. doi:10.1016/0048-9697(96)05251-5

    Article  CAS  Google Scholar 

  • Lim TT, Tay JH, The CI (2002) Contamination time effect on lead and cadmium fractionation in a tropical coastal clay. J Environ Qual 31:806–812

    Article  CAS  Google Scholar 

  • Lu A, Zhang S, Shan XQ (2005) Time effect on the fractionation of heavy metals in soils. Geoderma 125:225–234. doi:10.1016/j.geoderma.2004.08.002

    Article  CAS  Google Scholar 

  • Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Soil Sci Soc Am J 42:259–264

    Google Scholar 

  • Ma YB, Uren NC (1998) Transformations of heavy metals added to soil application of a new sequential extraction procedure. Geoderma 84:157–168. doi:10.1016/S0016-7061(97)00126-2

    Article  CAS  Google Scholar 

  • Mann SS, Ritchie GSP (1994) Changes in the forms of cadmium with time in some western Australian soils. Aust J Soil Res 32:241–250. doi:10.1071/SR9940241

    Article  CAS  Google Scholar 

  • McBride M, Sauvé S, Hendershot W (1997) Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. Eur J Soil Sci 48:337–346. doi:10.1111/j.1365-2389.1997.tb00554.x

    Article  CAS  Google Scholar 

  • McLaren RG, Lawson DM, Swift RS (1986) Sorption and desorption of cobalt by soils and soil constituents. J Soil Sci 37:413–426. doi:10.1111/j.1365-2389.1986.tb00374.x

    Article  CAS  Google Scholar 

  • McLaren RG, Backes CA, Rate AW, Swift RS (1998) Cadium and cobalt desorption kinetics from soil clays: effect of sorption period. Soil Sci Soc Am J 62:332–337

    Article  CAS  Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Lemming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    CAS  Google Scholar 

  • Munch D (1993) Concentration profiles of arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc, vanadium and polynuclead aromatic hydrocarbons in forest soil beside an urban road. Sci Total Environ 138:47–55. doi:10.1016/0048-9697(93)90404-T

    Article  Google Scholar 

  • Nakhone NL, Young SD (1993) The significance of (radio-) labile cadmium pools in soil. Environ Pollut 82:73–77. doi:10.1016/0269-7491(93)90164-J

    Article  CAS  Google Scholar 

  • Norrstrom AC, Jacks G (1998) Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts. Sci Total Environ 218:161–174. doi:10.1016/S0048-9697(98)00203-4

    Article  CAS  Google Scholar 

  • Onyari JM, Wandiga SO, Njentebe JO (1991) Lead contamination in street soils of Nairobi City, Mombassa Island, Kenya. Bull Environ Contam Toxicol 46:782–789. doi:10.1007/BF01689968

    Article  CAS  Google Scholar 

  • Rajaie M, Karimin N, Maftoun M, Yasrebi J, Assad MT (2006) Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time. Geoderma 136:533–541. doi:10.1016/j.geoderma.2006.04.007

    Article  CAS  Google Scholar 

  • Ramos L, Hernandez LM, Gonzalez MJ (1994) Sequential fractionation of Copper, Lead, Cadmium and Zinc in soils from of near donana national park. J Environ Qual 22:50–57

    Article  Google Scholar 

  • Safari Sinegani AA, Ebrahimi P (2007) The potential of Razan-Hamadan highway indigenous plant species for the phytoremediation of lead contaminated land. Soil Environ 26:10–14

    Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131. doi:10.1021/es9907764

    Article  CAS  Google Scholar 

  • Tasi LJ, Yu KC, Chang JS, Ho ST (1998) Fractionation of heavy metals in sediment cores from the ELL-REN River, aiwan. Water Sci Technol 37:217–224. doi:10.1016/S0273-1223(98)00201-7

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi:10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Trivedi P, Axe L (2000) Modeling Cd and Zn sorption to hydrous metal oxides. Environ Sci Technol 34:2215–2223. doi:10.1021/es991110c

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. doi:10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Xian X (1987) Chemical partitioning of cadmium, zinc, lead, and copper in soils near smelter. Environ Sci Heal 22:527–5541. doi:10.1080/10934528709375368

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by funds allocated by the Vice President for Research of the Bu-Ali Sina University. We acknowledge the assistance of M. Dadivar for some laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Safari Sinegani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safari Sinegani, A.A., Mirahamdi Araki, H. Changes in chemical forms of lead in temperate and semiarid soils in sterile and unsterile conditions. Environ Chem Lett 8, 323–330 (2010). https://doi.org/10.1007/s10311-009-0227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-009-0227-9

Keywords

Navigation