Skip to main content
Log in

Reductive dechlorination of chlorobenzene in supercritical water catalyzed by Fe/ZrO2

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Reductive dechlorination of chlorobenzene by Fe/ZrO2 in supercritical water was investigated. The effects of the operation conditions were studied. The dechlorination of chlorobenzene obeyed pseudo-first-order kinetics models. In supercritical water, the rate constant increases more rapidly with temperature than those in subcritical water. The results showed that the rate-determining step of dechlorination in subcritical water is diffusion; whereas the rate-determining of dechlorination in supercritical water is chemical reaction. The reaction mechanism in subcritical water might involve with an ionic mechanism; whereas the reaction mechanism in supercritical water might involve with a homolytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akimoto M, Tanaka H, Watanabe A (2000) Dechlorination of 1-chlorohexadecane and 2-chloronaphthalene in water under sub- and supercritical conditions. Can J Chem Eng 78:1151–1156

    Article  CAS  Google Scholar 

  • Broll D, Kaul C, Kramer A, Krammer P, Richter T, Jung M, Vogel H, Zehner P (1999) Chemistry in supercritical water. Angew Chem Int Ed 38:2998–3014

    Article  Google Scholar 

  • Cafissi A, Beduschi S, Balacco V, Sacchi B, Trasatti SP (2007) Chemical dechlorination of polychlorinated biphenyls (PCBs) from dielectric oils. Environ Chem Lett 5:101–106

    Article  CAS  Google Scholar 

  • Chen L, Wu YQ, Ni YH, Zhu ZB (2004) Depolymerization of polyethylene terephthalate in supercritical methanol. J Chem Eng Chin U 18:585–589

    CAS  Google Scholar 

  • Dirk CH, Chien MW, Bernd WW (2000) Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water. J Environ Monit 2:45–48. doi:10.1039/a908026k

    Article  Google Scholar 

  • Fang Z, Assaaoudi H, Sobhy A, Barsan MM, Butler IS, Kozinski JA (2008) Use of oxygen and methanol in promoting the destruction of decachlorobiphenyl in supercritical water. Fuel 87:353–358. doi:10.1016/j.fuel.2007.05.025

    Article  CAS  Google Scholar 

  • Kluyev N, Cheleptchikov A, Brodsky E, Soyfer V, Zhilnikov V (2002) Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water. Chemosphere 46:1293–1296. doi:10.1016/S0045-6535(01)00276-4

    Article  CAS  Google Scholar 

  • Kubatova A, Herman J, Steckler TS, Deveij M, Miller DJ, Klunder EB, Wai CM, Hawthorne SB (2003) Subcritical (hot/liquid) water dechlorination of PCBs (Aroclor 1254) with metal additives and in waste paint. Environ Sci Technol 37:5757–5762. doi:10.1021/es030437h

    Article  CAS  Google Scholar 

  • Lee G, Nunoura T, Matsumura Y, Yamamoto K (2002) Effects of a sodium hydroxide addition on the decomposition of 2-chlorophenol in supercritical water. Ind Eng Chem Res 41:5427–5431. doi:10.1021/ie0108548

    Article  CAS  Google Scholar 

  • Marshall WL, Franck EU (1981) Ion product of water substance, 0–1,000°C, 1–10,000 bars new international formulation and its background. J Phys Chem Ref Data 10:305–566

    Article  Google Scholar 

  • Morlando R, Manahan SE, Larsen DW (1997) Iron-catalyzed cocurrent flow destruction and dechlorination of chlorobenzene during gasification. Environ Sci Technol 31:409–415. doi:10.1021/es960226v

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chem Mater 14:5140–5147. doi:10.1021/cm020737i

    Article  CAS  Google Scholar 

  • Shoji D, Sugimoto K, Uchida H, Itatani K, Fujie M, Koda S (2005) Visualized kinetic aspects of decomposition of a wood block in sub- and supercritical water. Ind Eng Chem Res 44:2975–2981. doi:10.1021/ie040263s

    Article  CAS  Google Scholar 

  • Tanabe K, Holderich WF (1999) Industrial application of solid acid–base catalysts. Appl Catal Gen 181:399–434. doi:10.1016/S0926-860X(98)00397-4

    Article  CAS  Google Scholar 

  • Wei GT, Wei CH, He FM, Wu CF (2009) J Environ Monit. doi:10.1039/B818092J

  • Westacott RE, Johnston KP, Rossky PJ (2001) Stability of ionic and radical molecular dissociation pathways for reaction in supercritical water. J Phys Chem B 105:6611–6619. doi:10.1021/jp010005y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National High Technology Research and Development Program of China (2006AA06Z378) and the National Natural Science Foundation of China (20777018) are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Hai Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, GT., Wei, CH., Wu, CF. et al. Reductive dechlorination of chlorobenzene in supercritical water catalyzed by Fe/ZrO2 . Environ Chem Lett 8, 165–169 (2010). https://doi.org/10.1007/s10311-009-0204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-009-0204-3

Keywords

Navigation