Skip to main content

Advertisement

Log in

Phosphates for Pb immobilization in soils: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

In its soluble ionic forms, lead (Pb) is a toxic element occurring in waters and soils mainly as the result of human activities. The bioavailability of lead ions can be decreased by complexation with various materials in order to decrease their toxicity. Pb chemical immobilization using phosphate addition is a widely accepted technique to immobilize Pb from aqueous solution and contaminated soils. The application of different P amendments cause Pb in soils to shift from forms with high availability to the most strongly bound Pb fractions. The increase of Pb in the residual or insoluble fraction results from formation of pyromorphite Pb5(PO4)3X where X = F, Cl, Br, OH, the most stable environmental Pb compounds under a wide range of pH and Eh natural conditions. Accidental pyromorphite ingestion does not yield bioavailable lead, because pyromorphite is insoluble in the intestinal tract. Numerous natural and synthetic phosphates materials have been used to immobilize Pb: apatite and hydroxyapatite, biological apatite, rock phosphate, soluble phosphate fertilizers such as monoammonium phosphate, diammonium phosphate, phosphoric acid, biosolids rich in P, phosphatic clay and mixtures. The identification of pyromorphite in phosphate amended soils has been carried out by different non destructive techniques such as X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption fine structure, transmission electron microscopy and electron microprobe analysis. The effectiveness of in situ Pb immobilization has also been evaluated by selective sequential extraction, by the toxicity leaching procedure and by a physiologically based extraction procedure simulating metal ingestion and gastrointestinal bioavailability to humans. Efficient Pb immobilization using P amendments requires increasing the solubility of the phosphate phase and of the Pb species phase by inducing acid conditions. Although phosphorus addition seems to be highly effective, excess P in soil and its potential effect on eutrophication of surface water, and the possibility of As enhanced leaching remains a concern. The use of mixed treatments may be a useful strategy to improve their effectiveness in reducing lead phyto- and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admassu W, Breese T (1999) Feasibility of using natural fishbone apatite as a substitute for hydroxyapatite in remediating aqueous heavy metals. J Hazard Mater 69:187–196

    Article  CAS  Google Scholar 

  • Adriano D (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Google Scholar 

  • Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution. Blackie Academic and Professional, London

    Google Scholar 

  • Arnich N, Lanhers MC, Laurensot F, Podor R, Montiel A, Burnel D (2003) In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environ Pollut 124:139–149

    Article  CAS  Google Scholar 

  • Basta N, Gradwohl R, Snethen K, Schroder J (2001) Chemical immobilization of lead, zinc and cadmium in smelter contaminated soils using biosolids and rock phosphate. J Environ Qual 30:1222–1230

    CAS  Google Scholar 

  • Berti W, Cunningham S (1997) In-place inactivation of Pb in Pb-contaminated soils. Environ Sci Technol 31:1359–1364

    Article  CAS  Google Scholar 

  • Boisson J, Ruttens A, Mench M, Vangronsveld J (1999) Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environ Pollut 104:225–233

    Article  CAS  Google Scholar 

  • Bolan N, Adriano D, Naidu R (2003) Role of phosphorus in (im)mobilization and baiovailability of heavy metals in the soil–plant system. Rev Environ Contam Toxicol 177:1–44

    Article  CAS  Google Scholar 

  • Bradl H (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Brown S, Chaney R, Hallfrisch J, Xue Q (2003) Effect of biosolids processing on lead bioavailability in an urban soil. J Environ Qual 32:100–108

    CAS  Google Scholar 

  • Brown S, Chaney R, Hallfrisch J, Ryan J, Berti W (2004) In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. J Environ Qual 33:522–531

    CAS  Google Scholar 

  • Brown S, Christensen B, Lombi E, McLaughlin M, McGrath S, Colpaert J, Vangronsveld J (2005) An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environ Pollut 138:34–45

    Article  CAS  Google Scholar 

  • Cao RX, Ma LQ, Singh S, Chen M, Harris W, Kizza P (2001) Field demonstration of metal immobilization in contaminated soils using phosphate amendments. Florida Institute of Phosphate Research, Gainesville

    Google Scholar 

  • Cao RX, Ma LQ, Chen M, Singh S, Harris W (2002) Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ Sci Technol 36:5296–5304

    Article  CAS  Google Scholar 

  • Cao RX, Ma LQ, Chen M, Singh S, Harris W (2003) Phosphate-induced metal immobilization in a contaminated site. Environ Pollut 122:19–28

    Article  CAS  Google Scholar 

  • Cao RX, Ma LQ, Rhue D, Appel C (2004) Mechanisms of lead, copper and zinc retention by phosphate rock. Environ Pollut 131:435–444

    Article  CAS  Google Scholar 

  • Chen X, Wright J, Conca J, Peurrung L (1997a) Effects of pH on heavy metal sorption on mineral apatite. Environ Sci Technol 31:624–631

    Article  CAS  Google Scholar 

  • Chen X, Wright J, Conca J, Perurrung L (1997b) Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Pollut 98:57–78

    CAS  Google Scholar 

  • Chen M, Ma LQ, Singh S, Cao R, Melamed R (2003) Field demonstration of in situ immobilization of soil Pb using P amendments. Adv Environ Res 8:93–102

    Article  CAS  Google Scholar 

  • Chen S, Zhu Y, Ma Y (2006) The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J Hazard Mater 134:74–79

    Article  CAS  Google Scholar 

  • Chen S, Xu M, Ma Y, Yang J (2007) Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicol Environ Saf 67:278–285

    Article  CAS  Google Scholar 

  • Cheng S, Hseu Z (2002) In-situ immobilization of cadmium and lead by different amendments in two contaminated soils. Water Air Soil Pollut 140:73–84

    Article  CAS  Google Scholar 

  • Chrysochoou M, Dermatas D, Grubb D (2007) Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. J Hazard Mater 144:1–14

    Article  CAS  Google Scholar 

  • Cotter-Howells J, Caporn S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342

    Article  CAS  Google Scholar 

  • Cotter-Howells J, Cahmpness P, Charnock J, Pattrick R (1994) Identification of pyromorphite in mine-waste contaminated soils by ATEM and EXAFS. Eur J Soil Sci 45:393–402

    Article  CAS  Google Scholar 

  • Crannell B, Eighmy T, Krzanowski J, Eudsden J, Shaw E, Francis C (2000) Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manage 20:135–148

    Article  CAS  Google Scholar 

  • Davis BE (1995) Lead. In: Alloway BJ (eds) Heavy metals in soil. Blackie Academic and Professional, Glasgow, pp 208–223

    Google Scholar 

  • Deydier E, Guillet R, Cren S, Pereas V, Mouchet F, Gauthier L (2007) Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: “chemical and ecotoxicological studies”. J Hazard Mater 146:227–236

    Article  CAS  Google Scholar 

  • Eighmy T, Crannell B, Butler L, Cartledge F, Emery E, Oblas D, et al (1997) Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 31:3330–3338

    Article  CAS  Google Scholar 

  • Eighmy T, Crannell B, Krzanowski J, Butler L, Cartledge F, Emery E, et al (1998) Characterization and phosphate stabilization of dusts from the vitrification of MSW combustion residues. Waste Manage 34:4614–4619

    Google Scholar 

  • Essington M, Foss J, Roh Y (2004) The soil mineralogy of lead at Horace’s Villa. Soil Sci Soc Am J 68:979–993

    Article  CAS  Google Scholar 

  • Farfel M, Orlovaa A, Chaneyb R, Leesc P, Rohded C, Ashleye P (2005) Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro® amendment and grass seeding in urban yards. Sci Total Environ 340:81–95

    Article  CAS  Google Scholar 

  • Garrido F, Illera V, Campbell C, Garcia-González M (2006) Regulating the mobility of Cd, Cu and Pb in an acid soil with amendments of phosphogypsum, sugar foam and phosphoric rock. Eur J Soil Sci 57:95–105

    Article  CAS  Google Scholar 

  • Heredia O, Fernández-Cirelli A (2007) Environmental risks of increasing phosphorus addition in relation to soil sorption capacity. Geoderma 137:426–431

    Article  CAS  Google Scholar 

  • Hettiarachchi G, Pierzynski G (2004) Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ Prog 23:78–93

    Article  CAS  Google Scholar 

  • Hettiarachchi G, Pierzynski G, Ransom M (2000) In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619

    Article  CAS  Google Scholar 

  • Hettiarachchi G, Pierzynski G, Ransom M (2001) In situ stabilization of soil lead using phosphorus. J Environ Qual 30:1214–1221

    CAS  Google Scholar 

  • Hodson M, Valsami-Jones E, Cotter-Howells J, Dubbin W, Kemp A, Thornton I, Warren A (2001) Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils-a leaching column study. Environ Pollut 112:233–243

    Article  CAS  Google Scholar 

  • Knox A, Kaplan D, Adriano D, Hinton T, Wilson M (2003) Apatite and phillipsite as sequestering agents for metals and radionuclides. J Environ Qual 32:515–525

    CAS  Google Scholar 

  • Laperche V, Traina S (1998) Immobilization of Pb by hydroxyapatite. In: Jenne E (ed) Adsorption of metals by geomedia. Academic, London, pp 255–276

    Chapter  Google Scholar 

  • Laperche V, Traina S, Gaddam P, Logan T (1996) Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environ Sci Technol 30:3321–3326

    Article  CAS  Google Scholar 

  • Laperche V, Logan T, Gaddam P, Traina S (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ Sci Technol 31:2745–2753

    Article  CAS  Google Scholar 

  • Li Y, Chaney R, Siebielec G, Kerschner B (2000) Response of four turf grass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, PA. J Environ Qual 29:1440–1447

    CAS  Google Scholar 

  • Lin C, Lian J, Fang H (2005) Soil lead immobilization using phosphate rock. Water Air Soil Pollut 161:113–123

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41:2491–2502

    Article  CAS  Google Scholar 

  • Lower S, Maurice P, Traina SJ (1998) Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite: direct evidence of homogeneous nucleation. Geochim Cosmochim Acta 62:1773–1780

    Article  CAS  Google Scholar 

  • Ma LQ, Rao G (1999) Aqueous Pb reduction in Pb-contaminated soils by phosphate rocks. Water Air Soil Pollut 110:1–16

    Article  CAS  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810

    Article  CAS  Google Scholar 

  • Ma QY, Logan TJ, Traina SJ, Ryan J (1994a) Effects of NO 3 , Cl, F, SO 2−4 and CO 2−3 on Pb2+ immobilization by hydroxyapatite. Environ Sci Technol 28:408–418

    Article  CAS  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ, Ryan J (1994b) Effects of aqueous Al, Cd, Cu, Fe (II), Ni and Zn on Pb immobilization by hydroxyapatite. Environ Sci Technol 28:1219–1228

    Article  CAS  Google Scholar 

  • Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29:1118–1126

    Article  CAS  Google Scholar 

  • Manecki M, Maurice P, Traina SJ (2000) Uptake of aqueous Pb by Cl, F and OH apatite: mineralogical evidence for nucleation mechanisms. Am Mineral 85:932–942

    CAS  Google Scholar 

  • Mavropoulos E, Rossi A, Costa A, Perez C, Moreira J, Saldanha M (2002) Studies on the mechanisms of lead immobilization by hydroxyapatite. Environ Sci Technol 36:1625–1629

    Article  CAS  Google Scholar 

  • Mavropoulos E, Rocha N, Morieira J, Rossi A, Soares G (2004) Characterization of phase evolution during lead immobilization by synthetic hydroxyapatite. Mater Charact 53:71–78

    Article  CAS  Google Scholar 

  • McGowen SL, Basta NT, Brown GO (2001) Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual 30:493–500

    CAS  Google Scholar 

  • Melamed R, Cao X, Chen M, Ma LQ (2003) Field assessment of lead immobilization in a contaminated soil after phosphate application. Sci Total Environ 305:117–127

    Article  CAS  Google Scholar 

  • Mouflih M, Aklil A, Jahroud N, Gourai M, Sebti S (2006) Removal of lead from aqueous solutions by natural phosphate. Hydrometallurgy 81:219–225

    Article  CAS  Google Scholar 

  • Nriagu JO (1984) Formation and stability of base metal phosphates in soils and sediments. In: Nriagu JO, Moore P (eds) Phosphate minerals. Springer, London, pp 318–329

    Google Scholar 

  • Peryea F, Kammereck R (1997) Phosphate-enhanced movement of arsenic out of lead-arsenate-contaminated topsoil and through uncontaminated subsoil. Water Air Soil Poll 93:243–254

    CAS  Google Scholar 

  • Porter S, Scheckel K, Impellitteri C, Ryan J (2004) Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Crit Rev Environ Sci Technol 34:495–604

    Article  CAS  Google Scholar 

  • Ruby M, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28:646–653

    Article  CAS  Google Scholar 

  • Ruby M, Davis A, Schoof R, Eberle S, Sellstone C (1996) Estimation of bioavailability using a physiologically based extraction test. Environ Sci Technol 30:420–430

    Article  Google Scholar 

  • Ryan K, Zhang P, Hesterberg D, Chou J, Sayers D (2001) Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ Sci Technol 35:3798–3803

    Article  CAS  Google Scholar 

  • Sauvé S, Martínez C, McBride M, Hendershot W (2000) Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite and leaf compost. Soil Sci Soc Am J 64:595–599

    Article  Google Scholar 

  • Scheckel K, Ryan J (2002) Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ Sci Technol 36:2198–2204

    Article  CAS  Google Scholar 

  • Scheckel K, Ryan J (2004) Spectroscopic speciation and quantification of lead in soils. J Environ Qual 33:1288–1295

    CAS  Google Scholar 

  • Scheckel K, Impellitteri C, Ryan J, McEvoy T (2003) Assessment of a sequential extraction procedure for perturbed lead-contaminated samples with and without phosphorus amendments. Environ Sci Technol 37:1892–1898

    Article  CAS  Google Scholar 

  • Scheckel K, Ryan J, Allen D, Lescano N (2005) Determining speciation of Pb in phosphate-amended soils: method limitations. Sci Total Environ 350:261–272

    Article  CAS  Google Scholar 

  • Scheinost A, Abend S, Pandya K, Sparks D (2001) Kinetic controls on Cu and Pb sorption by ferrihydrite. Environ Sci Technol 35:1090–1096

    Article  CAS  Google Scholar 

  • Schwab A, Lewis K, Banks M (2006) Lead stabilization by phosphate amendments in soil impacted by paint residue. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:359–368

    CAS  Google Scholar 

  • Seaman J, Arey J, Bertsch P (2001) Immobilization of Ni and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual 30:460–469

    Article  CAS  Google Scholar 

  • Shashkova I, Rat’Ko A, Kitikova N (1999) Removal of heavy metal ions from aqueous solutions by alkaline-earth metal phosphates. Colloids Surf A Physicochem Eng Asp 160:207–215

    Article  CAS  Google Scholar 

  • Singh S, Ma LQ, Harris W (2001) Heavy metal interactions with phosphatic clay: sorption and desorption behaviour. J Environ Qual 30:1961–1968

    CAS  Google Scholar 

  • Sneddon I, Orueetxebarria M, Hodson M, Schofield P, Valsami-Jones E (2006) Use of bone meal amendments to immobilize Pb, Zn and Cd in soil: a leaching column study. Environ Pollut 144:816–825

    Article  CAS  Google Scholar 

  • Srinivasan M, Ferraris C, White T (2006) Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite. Environ Sci Technol 40:7054–7059

    Article  CAS  Google Scholar 

  • Strawn D, Hickey P, Knudesen A, Baker L (2007) Geochemistry of lead contaminated wetland soils amended with phosphorus. Environ Geol 52:109–122

    Article  CAS  Google Scholar 

  • Sugiyama S, Ichii T, Fujisawa M, Kawashiro K, Tomida T, Shigemoto N, Hayashi H (2003) Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates. J Colloid Interface Sci 259:408–410

    Article  CAS  Google Scholar 

  • Suzuki Y, Kyoichi I, Miyake M (1981) Synthetic hydroxyapatites employed as inorganic cation-exchangers. J Chem Soc Faraday Trans 77:1059–1062

    Article  CAS  Google Scholar 

  • Takeuchi Y, Arai H (1990) Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. J Chem Eng Jpn 23:75–80

    Article  CAS  Google Scholar 

  • Tang X, Zhu Y, Chen S, Tang L, Chen X (2004) Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb contaminated soil using in vitro test. Environ Int 30:531–537

    Article  CAS  Google Scholar 

  • Traina S., Laperche V. (1999) Contaminant bioavailability in soils, sediments and aquatic environments. Proc Natl Acad Sci USA 96:3365–3371

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1996) Soil screening guidance, user’s guidance, EPA 540/R−96/018. Office of Solid and Emergency Response, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) Region 10 (2001) Consensus plan for soil and sediment studies: Coeur d´ Alene river soils and sediments bioavailability studies (URS DCN: 4162500.06161.05a.EPA:16.2), pp 1–16

  • Vangronsveld J, Cunningham SD (1998) Introduction to the concepts. In: Vangronsveld J, Cunningham SD (eds) Metal contaminated soils: in situ inactivation and phytorestoration. Springer, Berlin, pp 1–15

    Google Scholar 

  • Wilson C, Brigmon R, Knox A, Seaman J, Smith G (2006) Effects of microbial and phosphate amendments on the bioavailability of lead (Pb) in shooting range soil. Bull Environ Contam Toxicol 76:392–399

    Article  CAS  Google Scholar 

  • Xu Y, Schwartz F (1994) Lead immobilization by hydroxyapatite in aqueous solution. J Contam Hydrol 15:187–206

    Article  CAS  Google Scholar 

  • Xu Y, Schwartz F, Traina S (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480

    Article  CAS  Google Scholar 

  • Yang J, Mosby D (2006) Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil. Sci Total Environ 366:136–142

    Article  CAS  Google Scholar 

  • Yang J, Mosby D, Casteel S, Blanchar R (2001) Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Environ Sci Technol 35:3553–3559

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Ma LQ (2007) Application methods affect phosphorus-induced lead immobilization from a contaminated soil. J Environ Qual 36:373–378

    Article  CAS  Google Scholar 

  • Zhang P, Ryan J (1999a) Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite. Environ Sci Technol 33:618–624

    Article  CAS  Google Scholar 

  • Zhang P, Ryan J (1999b) Transformation of Pb (II) from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH. Environ Sci Technol 32:625–630

    Article  Google Scholar 

  • Zhang P, Ryan J, Bryndzia L (1997) Pyromorphite formation from goethite adsorbed lead. Environ Sci Technol 31:2673–2678

    Article  CAS  Google Scholar 

  • Zhang P, Ryan J, Yang J (1998) In vitro soil Pb solubility in the presence of hydroxyapatite. Environ Sci Technol 32:2763–2768

    Article  CAS  Google Scholar 

  • Zhu W, Chen S, Yang J (2004) Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environ Int 30:351–356

    Article  CAS  Google Scholar 

  • Zwonitzer J, Pierzynski G, Hettiarachchi G (2003) Phosphorus source and rate effects on lead, cadmium and zinc bioavailability in a metal contaminated soil. Water Air Soil Pollut 143:193–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Miretzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miretzky, P., Fernandez-Cirelli, A. Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6, 121–133 (2008). https://doi.org/10.1007/s10311-007-0133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-007-0133-y

Keywords

Navigation