Skip to main content
Log in

Carbon dynamics of North American boreal forest after stand replacing wildfire and clearcut logging

  • Special Feature: Review
  • Approaches for forest disturbances studies: natural variability and tree regeneration
  • Published:
Journal of Forest Research

Abstract

Boreal forest carbon (C) storage and sequestration is a critical element for global C management and is largely disturbance driven. The disturbance regime can be natural or anthropogenic with varying intensity and frequency that differ temporally and spatially the boreal forest. The objective of this review was to synthesize the literature on C dynamics of North American boreal forests after most common disturbances, stand replacing wildfire and clearcut logging. Forest ecosystem C is stored in four major pools: live biomass, dead biomass, organic soil horizons, and mineral soil. Carbon cycling among these pools is inter-related and largely determined by disturbance type and time since disturbance. Following a stand replacing disturbance, (1) live biomass increases rapidly leading to the maximal biomass stage, then stabilizes or slightly declines at old-growth or gap dynamics stage at which late-successional tree species dominate the stand; (2) dead woody material carbon generally follows a U-shaped pattern during succession; (3) forest floor carbon increases throughout stand development; and (4) mineral soil carbon appears to be more or less stable throughout stand development. Wildfire and harvesting differ in many ways, fire being more of a chemical and harvesting a mechanical disturbance. Fire consumes forest floor and small live vegetation and foliage, whereas logging removes large stems. Overall, the effects of the two disturbances on C dynamics in boreal forest are poorly understood. There is also a scarcity of literature dealing with C dynamics of plant coarse and fine roots, understory vegetation, small-sized and buried dead material, forest floor, and mineral soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arseneault D (2001) Impact of fire behavior on postfire forest development in a homogeneous boreal landscape. Can J For Res 31:1367–1374

    Article  Google Scholar 

  • AuClair AND, Carter TB (1993) Forest wildfires as a recent source of CO2 at northern latitudes. Can J For Res 23:1528–1536

    Article  CAS  Google Scholar 

  • Banfield GE, Bhatti JS, Jiang H, Apps MJ (2002) Variability in regional scale estimates of carbon stocks in boreal forest ecosystems: results from West-Central Alberta. For Ecol Manag 169:15–27

    Article  Google Scholar 

  • Bergeron Y, Gauthier S, Flannigan M, Kafka V (2004) Fire regimes at the transition between mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology 85:1916–1932

    Article  Google Scholar 

  • Bhatti JS, Apps MJ, Tarnocai C (2002) Estimates of soil organic carbon stocks in central Canada using three different approaches. Can J For Res 32:805–812

    Article  Google Scholar 

  • Binkley D, Sollins P, Bell R, Sachs D, Myrold D (1992) Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73:2022–2033

    Article  CAS  Google Scholar 

  • Bisbee KE, Gower ST, Norman JM, Nordheim EV (2001) Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–270

    Article  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–487

    Article  Google Scholar 

  • Bormann BT, Homann PS, Darbyshire RL, Morrissette BA (2008) Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can J For Res 38:2771–2783

    Article  CAS  Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer, New York

    Google Scholar 

  • Bourgeau-Chavez LL, Kasischke ES, Mudd JP, French NHF (2000) The role of fine roots in the functioning of boreal forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change and carbon cycling in the boreal forest. Ecological studies series. Springer, New York, pp 258–273

    Google Scholar 

  • Brais S, Sadi R, Bergeron Y, Grenier Y (2005) Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For Ecol Manag 220:216–226

    Article  Google Scholar 

  • Brassard BW, Chen HYH (2006) Stand structural dynamics of North American boreal forests. Crit Rev Plant Sci 25:115–137

    Article  Google Scholar 

  • Brassard BW, Chen HYH (2008) Effects of forest type and disturbance on diversity of coarse woody debris in boreal forest. Ecosystems 11:1078–1090

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Wang JR, Duinker PN (2008) Effects of time since stand-replacing fire and overstory composition on live-tree structural diversity in the boreal forest of central Canada. Can J For Res 38:52–62

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y (2009) Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci 28:179–197

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y, Paré D (2011) Differences in fine root productivity between mixed- and single-species stands. Funct Ecol 25:238–246

    Article  Google Scholar 

  • Brown JK, See TE (1981) Downed dead woody fuel and biomass in the northern Rocky Mountains. General Technical Report INT-117. USDA Forest Service

  • Brown PM, Shepperd WD, Mata SA, McClain DL (1998) Longevity of windthrown logs in a subalpine forest of central Colorado. Can J For Res 28:932–936

    Article  Google Scholar 

  • Boulanger Y, Sirois L (2006) Postfire dynamics of black spruce coarse woody debris in northern boreal forest of Quebec. Can J For Res 36:1770–1780

    Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Campbell JL, Sun OJ, Law BE (2004) Supply-side controls on soil respiration among Oregon forests. Glob Change Biol 10:1857–1869

    Article  Google Scholar 

  • Cannell MGR, Dewar RC (1994) Carbon allocation in trees—a review of concepts for modeling. Adv Ecol Res 25:59–104

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH, Paré D (2010) Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can J For Res 40:37–47

    Article  CAS  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  PubMed  Google Scholar 

  • Chapin FS, Mcguire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–223

    Article  Google Scholar 

  • Chen HYH, Popadiouk RV (2002) Dynamics of North American boreal mixedwoods. Environ Rev 10:137–166

    Article  Google Scholar 

  • Chen J, Colombo SJ, Ter-Mikaelian MT, Heath LS (2008) Future carbon storage in harvested wood products from Ontario’s Crown forests. Can J For Res 38:1947–1958

    Article  CAS  Google Scholar 

  • Chen WJ, Chen JM, Price DT, Cihlar J (2002) Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada. Can J For Res 32:833–842

    Article  Google Scholar 

  • Clark DF, Kneeshaw DD, Burton PJ, Antos JA (1998) Coarse woody debris in sub-boreal spruce forests of west-central British Columbia. Can J For Res 28:284–290

    Article  Google Scholar 

  • Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35:1617–1625

    Article  Google Scholar 

  • Creed IF, Webster KL, Morrison DL (2004) A comparison of techniques for measuring density and concentrations of carbon and nitrogen in coarse woody debris at different stages of decay. Can J For Res 34:744–753

    Article  Google Scholar 

  • DeBano LF, Neary DG, Folliott PF (1998) Fire’s effect on ecosystems. Wiley, New York

    Google Scholar 

  • Dec J, Bollag JM (1997) Determination of covalent and noncovalent binding interactions between xenobiotic chemicals and soil. Soil Sci 162:858–874

    Article  CAS  Google Scholar 

  • DeLuca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6:18–24

    Article  Google Scholar 

  • Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681

    Article  CAS  Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82:533–548

    Article  Google Scholar 

  • Feller MC (2003) Coarse woody debris in the old-growth forests of British Columbia. Environ Rev 11:135–157

    Article  Google Scholar 

  • Fleming TL, Freedman B (1998) Conversion of natural, mixed-species forests to conifer plantations: Implications for dead organic matter and carbon storage. Ecoscience 5:213–221

    Google Scholar 

  • Fredeen AL, Bois CH, Janzen DT, Sanborn PT (2005) Comparison of coniferous forest carbon stocks between old-growth and young second-growth forests on two soil types in central British Columbia, Canada. Can J For Res 35:1411–1421

    Article  CAS  Google Scholar 

  • Fridman J, Walheim M (2000) Amount, structure, and dynamics of dead wood on managed forestland in Sweden. For Ecol Manag 131:23–36

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429

    Google Scholar 

  • Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12:891–899

    Article  Google Scholar 

  • Gower ST (2003) Patterns and mechanisms of the forest carbon cycle. Annu Rev Environ Resour 28:169–204

    Article  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–1411

    Article  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382

    Article  PubMed  CAS  Google Scholar 

  • Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res Atmos 102:29029–29041

    Article  CAS  Google Scholar 

  • Grant RF (2004) Modeling topographic effects on net ecosystem productivity of boreal black spruce forests. Tree Physiol 24:1–18

    PubMed  Google Scholar 

  • Harden JS, O’Neill KP, Trumbore SE, Veldhuis H, Stocks BJ (1997) Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J Geophys Res 102:28817–28830

    Article  Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES (2000) The role of fire in the boreal carbon budget. Glob Change Biol 6:174–184

    Article  Google Scholar 

  • Harmon ME, Ferrell WK, Franklin JF (1990) Effects on carbon storage of conversion of old-growth forests to young forests. Science 247:699–702

    Article  PubMed  CAS  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Harmon ME, Sexton J (1996) Guidelines for measurements of woody detritus in forest ecosystems. Publication No. 20. U.S. LTER Network Office, University of Washington, Seattle

  • Hart SA, Chen HYH (2006) Understory vegetation dynamics of North American boreal forests. Crit Rev Plant Sci 25:381–397

    Article  Google Scholar 

  • Hart SA, Chen HYH (2008) Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecol Monogr 78:123–140

    Article  Google Scholar 

  • Hazlett PW, Gordon AM, Sibley PK, Buttle JM (2005) Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. For Ecol Manag 219:56–68

    Article  Google Scholar 

  • Hély C, Bergeron Y, Flannigan WD (2000) Coarse woody debris in the southeastern Canadian boreal forest: composition and load variations in relation to stand replacement. Can J For Res 30:674–687

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Hossain MF, Zhang Y, Chen WJ, Wang JX, Pavlic G (2007) Soil organic carbon content in northern Canada: a database of field measurements and its analysis. Can J Soil Sci 87:259–268

    Article  CAS  Google Scholar 

  • Houghton RA (1995) Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble E, Levine E, Stewart BA (eds) Soil and global change. CRC & Lewis, Boca Raton, pp 45–65

    Google Scholar 

  • Howard EA, Gower ST, Foley JA, Kucharik CJ (2004) Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Glob Change Biol 10:1267–1284

    Article  Google Scholar 

  • Huang WZ, Schoenau JJ (1996) Forms, amounts and distribution of carbon, nitrogen, phosphorus and sulfur in a boreal aspen forest soil. Can J Soil Sci 76:373–385

    Article  CAS  Google Scholar 

  • Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  CAS  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    Article  PubMed  CAS  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49:12–35

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Johnson EA (1992) Fire and vegetation dynamics—studies from the North American boreal forest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. Bioscience 56:598–606

    Article  Google Scholar 

  • Kasischke ES, Bruhwiler LP (2002) Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J Geophys Res Atmos 108:8146

    Article  CAS  Google Scholar 

  • Kasischke ES, Christensen NL, Stocks BJ (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–451

    Article  Google Scholar 

  • Khomik M, Arain MA, McCaughey JH (2006) Temporal and spatial variability of soil respiration in a boreal mixedwood forest. Agric For Meteorol 140:244–256

    Article  Google Scholar 

  • Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Poll 82:227–238

    Article  CAS  Google Scholar 

  • Krankina ON, Harmon ME, Griazkin AV (1999) Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J For Res 29:20–32

    Article  Google Scholar 

  • Krause H (1998) Forest floor mass and nutrients in two chronosequences of plantations: jack pine vs. black spruce. Can J Soil Sci 78:77–83

    Article  Google Scholar 

  • Kurz WA, Apps MJ (1996) Retrospective assessment of carbon flows in Canadian boreal forests. In: Apps MJ, Price DT (eds) Forest ecosystems, forest management and the global carbon cycle, NATO ASI series 1: global environmental change. Springer, Heidelberg, pp 173–183

    Google Scholar 

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenerg 25:381–388

    Article  CAS  Google Scholar 

  • Lecomte N, Simard M, Fenton N, Bergeron Y (2006) Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada. Ecosystems 9:1215–1230

    Article  Google Scholar 

  • Leduc SD, Rothstein DE (2007) Initial recovery of soil carbon and nitrogen pools and dynamics following disturbance in jack pine forests: a comparison of wildfire and clearcut harvesting. Soil Biol Biochem 39:2865–2876

    Article  CAS  Google Scholar 

  • Lee PC, Crites S, Nietfeld M, VanNguyen H, Stelfox JB (1997) Characteristics and origins of deadwood material in aspen-dominated boreal forests. Ecol Appl 7:691–701

    Article  Google Scholar 

  • Li Z, Kurz WA, Apps MJ, Beukema SJ (2003) Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can J For Res 33:126–136

    Article  Google Scholar 

  • Lindbladh M, Abrahamsson M, Seedre M, Jonsell M (2007) Saproxylic beetles in artificially created high-stumps of spruce and birch within and outside hotspot areas. Biodivers Conserv 16:3213–3226

    Article  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Article  Google Scholar 

  • Litton CM, Ryan MG, Tinker DB, Knight DH (2003) Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Can J For Res 33:351–363

    Article  Google Scholar 

  • Longton RE (1992) The role of bryophytes and lichens in terrestrial ecosystems. In: Bates JW, Farmer AW (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 77–102

    Google Scholar 

  • Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  PubMed  CAS  Google Scholar 

  • MacPherson DM, Lieffers VJ, Blenis PV (2001) Productivity of aspen stands with and without a spruce understory in Alberta’s boreal mixedwood forests. For Chron 77:351–356

    Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  PubMed  CAS  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Vargas PN, Patino S, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 neotropical forest plots. Glob Change Biol 10:563–591

    Article  Google Scholar 

  • Manies KL, Harden JW, Bond-Lamberty BP, O’Neill KP (2005) Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage. Can J For Res 35:472–482

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Martin JL, Gower ST, Plaut J, Holmes B (2005) Carbon pools in a boreal mixedwood logging chronosequence. Glob Change Biol 11:1883–1894

    Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • McKechnie J, Colombo SJ, Chen J, Mabee W, MacLean HL (2011) Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol (in press)

  • McRae DJ, Duchesne LC, Freedman B, Lynham TJ, Woodley S (2001) Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–260

    Article  CAS  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264

    Article  Google Scholar 

  • Medlyn BE, Berbigier P, Clement R, Grelle A, Loustau D, Linder S, Wingate L, Jarvis PG, Sigurdsson BD, McMurtrie RE (2005) Carbon balance of coniferous forests growing in contrasting climates: model-based analysis. Agric For Meteorol 131:97–124

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Micales JA, Skog KE (1997) The decomposition of forest products in landfills. Int Biodeterior Biodegr 39:145–158

    Article  Google Scholar 

  • Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28

    Article  PubMed  CAS  Google Scholar 

  • Mokany K, Raison RJ, Peokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Murty D, McMurtrie RE, Ryan MG (1996) Declining forest productivity in aging forest stands: a modeling analysis of alternative hypotheses. Tree Physiol 16:187–200

    PubMed  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Article  Google Scholar 

  • Nalder IA, Wein RW (1999) Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada. Glob Biogeochem Cycle 13:951–968

    Article  CAS  Google Scholar 

  • Nalder IA, Wein RW (2006) A model for the investigation of long-term carbon dynamics in boreal forests of western Canada—I. Model development and validation. Ecol Model 192:37–66

    Article  Google Scholar 

  • Neff JC, Harden JW, Gleixner G (2005) Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can J For Res 35:2178–2187

    Article  CAS  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  PubMed  CAS  Google Scholar 

  • O’Connell KEB, Gower ST, Norman JM (2003a) Comparison of NPP and light use dynamics of two boreal black spruce forest communities. Ecosystems 6:236–247

    Article  CAS  Google Scholar 

  • O’Connell KEB, Gower ST, Norman JM (2003b) Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248–260

    Article  CAS  Google Scholar 

  • Ouimet R, Camire C, Brazeau M, Moore JD (2008) Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can J For Res 38:92–100

    Article  Google Scholar 

  • Paré D, Bergeron Y (1995) Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. J Ecol 83:1001–1007

    Article  Google Scholar 

  • Pedlar JH, Pearce JL, Venier LA, McKenney DW (2002) Coarse woody debris in relation to disturbance and forest type in boreal Canada. For Ecol Manag 158:189–194

    Article  Google Scholar 

  • Peichl M, Arain AA (2006) Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140:51–63

    Article  Google Scholar 

  • Pienaar LV, Turnbull KJ (1973) The Chapman-Richards generalization of Von Bertalanffy’s growth model for basal area growth and yield in even—aged stands. For Sci 19:2–22

    Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Article  Google Scholar 

  • Prescott CE, Maynard DG, Laiho R (2000) Humus in northern forests: friend or foe? For Ecol Manag 133:23–36

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Niu J, Fyfe CA (1998) (13)CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For Ecol Manag 111:51–68

    Article  Google Scholar 

  • Pumpanen J, Westman CJ, Ilvesniemi H (2004) Soil CO2 efflux from a podzolic forest soil before and after forest clear-cutting and site preparation. Boreal Environ Res 9:199–212

    CAS  Google Scholar 

  • Raison RJ, Woods PV, Jakobsen BF, Bary GAV (1986) Soil temperatures during and following low-intensity prescribed burning in a Eucalyptus-pauciflora forest. Aust J Soil Res 24:33–47

    Article  Google Scholar 

  • Rapalee G, Trumbore SE, Davidson EA, Harden JW, Veldhuis H (1998) Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Glob Biogeochem Cycle 12:687–701

    Article  CAS  Google Scholar 

  • Rothstein DE, Yermakov ZY, Buell AL (2004) Loss and recovery of ecosystem carbon pools following stand-replacing wildfire in Michigan jack pine forests. Can J For Res 34:1908–1918

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Vogel JG, Sveinbjornsson B (2006) The role of fine roots in the functioning of boreal forests. In: Chapin FS III, Oswood MW, Van Cleve K, Viereck L, Verbyla D (eds) Alaska’s changing boreal forest. Oxford University Press, New York, pp 189–210

    Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen ME, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662

    Article  Google Scholar 

  • Ruess RW, Vancleve K, Yarie J, Viereck LA (1996) Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can J For Res 26:1326–1336

    Article  CAS  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74:393–414

    Article  Google Scholar 

  • Sandstrom F, Petersson H, Kruys N, Stahl G (2007) Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. For Ecol Manag 243:19–27

    Article  Google Scholar 

  • Sathre R, O’Connor (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Policy 13:104–114

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Seedre M, Chen HYH (2010) Carbon dynamics of aboveground live vegetation of boreal mixedwoods after wildfire and clearcutting. Can J For Res 40:1862–1869

    Article  CAS  Google Scholar 

  • Senici D, Chen HYH, Bergeron Y, Cyr D (2010) Spatiotemporal variations of fire frequency in central boreal forest. Ecosystems 13:1227–1238

    Article  Google Scholar 

  • Shaver GR, Billings WD, Chapin FS, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of Arctic ecosystems. Bioscience 42:433–441

    Article  Google Scholar 

  • Shorohova EV, Shorohov AA (2001) Coarse woody debris dynamics and stores in a boreal virgin spruce forest. Ecol Bull 49:129–135

    Google Scholar 

  • Shrestha BM, Chen HYH (2010) Effects of stand age, wildfire and clearcut harvesting on forest floor in boreal mixedwood forests. Plant Soil 336:267–277

    Article  CAS  Google Scholar 

  • Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag 128:211–225

    Article  Google Scholar 

  • Siltanen RM, Apps MJ, Zoltai SC, Mair RM, Strong WL (1997) A soil profile and organic carbon data base for Canadian forest and tundra mineral soils. Nat Resour Can Can For Serv North For Cent Inf Rep Fo42-271/1997E

  • Simard DG, Fyles JW, Pare D, Nguyen T (2001) Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can J Soil Sci 81:229–237

    Article  CAS  Google Scholar 

  • Sippola AL, Siitonen J, Kallio R (1998) Amount and quality of coarse woody debris in natural and managed coniferous forests near the timberline in Finnish Lapland. Scand J For Res 13:204–214

    Article  Google Scholar 

  • Smith CK, Coyea MR, Munson AD (2000) Soil carbon, nitrogen, and phosphorus stocks and dynamics under disturbed black spruce forests. Ecol Appl 10:775–788

    Article  Google Scholar 

  • Smith FW, Long JN (2001) Age-related decline in forest growth: an emergent property. For Ecol Manag 144:175–181

    Article  Google Scholar 

  • Spiecker H, Mielikainen K, Kohl M, Skovsgaars J (1996) Growth trends in European forest—studies from 12 countries. Springer, Berlin

    Google Scholar 

  • Spiecker H (1999) Overview of recent growth trends in European forests. Water Air Soil Poll 116:33–46

    Article  CAS  Google Scholar 

  • Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702

    Article  Google Scholar 

  • Steele SJ, Gower ST, Vogel CS, Norman JM (1997) Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol 17:577–587

    PubMed  CAS  Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant BR, Bissonette JA, Long JN, Roberts DW (1997) Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecol Appl 7:702–712

    Article  Google Scholar 

  • Taylor AR, Wang JR, Kurz WA (2008) Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: an exploratory analysis using the CBM-CFS3 simulation model. For Ecol Manag 255:3632–3641

    Google Scholar 

  • Ter-Mikaelian MT, Colombo SJ, Chen J (2008) Amount of downed woody debris and its prediction using stand characteristics in boreal and mixedwood forests of Ontario, Canada. Can J For Res 38:2189–2197

    Article  Google Scholar 

  • Thomas KD, Prescott CE (2000) Nitrogen availability in forest floors of three tree species on the same site: the role of litter quality. Can J For Res 30:1698–1706

    Article  CAS  Google Scholar 

  • Tinker DB, Knight DH (2001) Temporal and spatial dynamics of coarse woody debris in harvested and unharvested lodgepole pine forests. Ecol Model 141:125–149

    Article  CAS  Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, CamirT C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Article  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411

    Article  Google Scholar 

  • Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science 302:1344–1345

    Article  PubMed  CAS  Google Scholar 

  • Van Oijen M, Cannell MGR, Levy PE (2004) Modelling biogeochemical cycles in forests: state of the art and perspectives. In: Andersson F, Birot Y, Päivinen R (eds) Towards the sustainable use of Europe’s forests—forest ecosystem and landscape research: scientific challenges and opportunities 49:157–169

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, Ohara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Wang CK, Bond-Lamberty B, Gower ST (2002) Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132:374–381

    Article  Google Scholar 

  • Wang CK, Bond-Lamberty B, Gower ST (2003) Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob Change Biol 9:1066–1079

    Article  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  PubMed  CAS  Google Scholar 

  • Weber MG, Flannigan MD (1997) Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 5:145–166

    Article  CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Xanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  • Xing ZS, Bourque CPA, Swift DE, Clowater CW, Krasowski M, Meng FR (2005) Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiol 25:1207–1217

    PubMed  Google Scholar 

  • Yanai RD, Currie WS, Goodale CL (2003a) Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6:197–212

    Article  CAS  Google Scholar 

  • Yanai RD, Park BB, Hamburg SP (2006) The vertical and horizontal distribution of roots in northern hardwood stands of varying age. Can J For Res 36:450–459

    Article  Google Scholar 

  • Yanai RD, Stehman SV, Arthur MA, Prescott CE, Friedland AJ, Siccama TG, Binkley D (2003b) Detecting change in forest floor carbon. Soil Sci Soc Am J 67:1583–1593

    Article  CAS  Google Scholar 

  • Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal forests of Russia. Can J For Res 33:1211–1226

    Article  Google Scholar 

  • Yermakov Z, Rothstein DE (2006) Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests. Oecologia 149:690–700

    Article  PubMed  Google Scholar 

  • Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for a critical review and constructive recommendations. The financial support for this study was provided by the Natural Sciences and Engineering Research Council of Canada (283336 and STPGP 322297) and the Sustainable Forest Management Network Centre of Excellence of Canada. This study was also supported by the Estonian Ministry of Education and Research (project SF0170014s08) and by Estonian Science Foundation Grant no. 8496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meelis Seedre.

About this article

Cite this article

Seedre, M., Shrestha, B.M., Chen, H.Y.H. et al. Carbon dynamics of North American boreal forest after stand replacing wildfire and clearcut logging. J For Res 16, 168–183 (2011). https://doi.org/10.1007/s10310-011-0264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-011-0264-7

Keywords

Navigation