Skip to main content
Log in

Bildgebung beim Janz-Syndrom (juvenile myoklonische Epilepsie)

Neuroimaging in Janz syndrome (juvenile myoclonic epilepsy)

  • Leitthema – 100 Jahre Dieter Janz
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Die Bildgebung hat in den letzten 25 Jahren wesentliche neue Hinweise zum Verständnis der Pathophysiologie der juvenilen myoklonischen Epilepsie (JME) geliefert. In diesem Artikel werden die Kernpunkte dieser Arbeiten zusammengefasst, und ihre Bedeutung im Zusammenhang mit genetischen Veränderungen und der Hirnentwicklung bei JME wird diskutiert. Zusammenfassend liegt bei der JME eine komplexe, multifaktorielle Entwicklungsstörung vor, die zu verschiedenen strukturellen und funktionellen Veränderungen kortikaler und subkortikaler Strukturen führt. Dies führt letztendlich zu einer pathologisch erhöhten kortikokortikalen Konnektivität, gestörter kortikaler Inhibition und gestörter thalamokortikaler Rückkopplung. Ein Schwerpunkt dieser Veränderungen betrifft das frontozentrale motorische System, neuere Arbeiten zeigen aber auch darüber hinaus signifikante Veränderungen in anderen Hirnregionen

Abstract

In the past 25 years neuroimaging studies have made a significant contribution to further the understanding of the pathophysiology of juvenile myoclonic epilepsy (JME). This article summarizes the key results of these studies and discusses their meaning in the context of genetic alterations and brain development in JME. In summary, JME is a complex neurodevelopmental disease resulting in multiple structural and functional alterations of cortical and subcortical structures. These alterations ultimately lead to a pathologically increased corticocortical connectivity, impaired cortical inhibition and impaired thalamocortical feedback regulation. Many of these alterations affect the frontocentral motor system but more recent studies have also shown significant alterations in other brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bailey JN, de Nijs L, Bai D et al (2018) Variant intestinal-cell kinase in juvenile myoclonic epilepsy. N Engl J Med 378:1018–1028. https://doi.org/10.1056/NEJMoa1700175

    Article  CAS  PubMed  Google Scholar 

  2. Bin G, Wang T, Zeng H et al (2017) Patterns of gray matter abnormalities in idiopathic generalized epilepsy: a meta-analysis of voxel-based morphology studies. PLoS ONE 12:e169076. https://doi.org/10.1371/journal.pone.0169076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caciagli L, Wandschneider B, Xiao F et al (2019) Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain. https://doi.org/10.1093/brain/awz215

    Article  PubMed  PubMed Central  Google Scholar 

  4. Caeyenberghs K, Powell HWR, Thomas RH et al (2015) Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis. Neuroimage Clin 7:98–104. https://doi.org/10.1016/j.nicl.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  5. Craiu D (2013) What is special about the adolescent (JME) brain? Epilepsy Behav 28(1):S45–51. https://doi.org/10.1016/j.yebeh.2012.12.008

    Article  PubMed  Google Scholar 

  6. Delgado-Escueta AV, Koeleman BPC, Alonso ME et al (2013) The expanding quest for JME genes. Epilepsy Behav 28:S95. https://doi.org/10.1016/j.yebeh.2012.11.022

    Article  Google Scholar 

  7. Garcia-Ramos C, Dabbs K, Lin JJ et al (2018) Progressive dissociation of cortical and subcortical network development in children with new-onset juvenile myoclonic epilepsy. Epilepsia 59:2086–2095. https://doi.org/10.1111/epi.14560

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gilsoul M, Grisar T, Delgado-Escueta AV et al (2019) Subtle brain developmental abnormalities in the pathogenesis of juvenile myoclonic epilepsy. Front Cell Neurosci 13:433. https://doi.org/10.3389/fncel.2019.00433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Janz D (1985) Epilepsy with impulsive petit mal (juvenile myoclonic epilepsy). Acta Neurol Scand 72:449–459. https://doi.org/10.1111/j.1600-0404.1985.tb00900.x

    Article  CAS  PubMed  Google Scholar 

  10. Jiang S, Luo C, Gong J et al (2018) Aberrant thalamocortical connectivity in juvenile myoclonic epilepsy. Int J Neural Syst 28:1750034. https://doi.org/10.1142/S0129065717500344

    Article  CAS  PubMed  Google Scholar 

  11. Keller SS, Ahrens T, Mohammadi S et al (2011) Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy. Epilepsia 52:1715–1724. https://doi.org/10.1111/j.1528-1167.2011.03117.x

    Article  PubMed  Google Scholar 

  12. Kim JH, Kim JB, Suh S‑I, Kim DW (2018) Subcortical grey matter changes in juvenile myoclonic epilepsy. Neuroimage Clin 17:397–404. https://doi.org/10.1016/j.nicl.2017.11.001

    Article  PubMed  Google Scholar 

  13. Kim JH, Lee JK, Koh S‑B et al (2007) Regional grey matter abnormalities in juvenile myoclonic epilepsy: a voxel-based morphometry study. Neuroimage 37:1132–1137. https://doi.org/10.1016/j.neuroimage.2007.06.025

    Article  PubMed  Google Scholar 

  14. Kim SH, Lim S‑C, Kim W et al (2015) Extrafrontal structural changes in juvenile myoclonic epilepsy: a topographic analysis of combined structural and microstructural brain imaging. Seizure 30:124–131. https://doi.org/10.1016/j.seizure.2015.06.009

    Article  PubMed  Google Scholar 

  15. Koepp MJ, Duncan JS (1998) PET: opiate neuroreceptor mappinge. In: Henry TR, Duncan JS, Berkovic SF (Hrsg) Funct. imaging epilepsies. Lippincott, New York, S 145–156

    Google Scholar 

  16. Koepp MJ, Labbé C, Richardson MP et al (1997) Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. Brain 120(1):1865–1876

    Article  PubMed  Google Scholar 

  17. Koepp MJ, Richardson MP, Brooks DJ et al (1997) Central benzodiazepine/γ-aminobutyric acid(A) receptors in idiopathic generalized epilepsy: an [11C]flumazenil positron emission tomography study. Epilepsia 38:1089–1097. https://doi.org/10.1111/j.1528-1157.1997.tb01198.x

    Article  CAS  PubMed  Google Scholar 

  18. Lin JJ, Dabbs K, Riley JD et al (2014) Neurodevelopment in new-onset juvenile myoclonic epilepsy over the first 2 years. Ann Neurol 76:660–668. https://doi.org/10.1002/ana.24240

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meencke HJ, Janz D (1984) Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia 25:8–21. https://doi.org/10.1111/j.1528-1157.1984.tb04149.x

    Article  CAS  PubMed  Google Scholar 

  20. de Nijs L, Léon C, Nguyen L et al (2009) EFHC1 interacts with microtubules to regulate cell division and cortical development. Nat Neurosci 12:1266–1274. https://doi.org/10.1038/nn.2390

    Article  CAS  PubMed  Google Scholar 

  21. O’Muircheartaigh J, Vollmar C, Barker GJ et al (2012) Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain 135:3635–3644. https://doi.org/10.1093/brain/aws296

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Muircheartaigh J, Vollmar C, Barker GJJ et al (2011) Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy. Neurology 76:34–40. https://doi.org/10.1212/WNL.0b013e318203e93d

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ronan L, Alhusaini S, Scanlon C et al (2012) Widespread cortical morphologic changes in juvenile myoclonic epilepsy: evidence from structural MRI. Epilepsia 53:651–658. https://doi.org/10.1111/j.1528-1167.2012.03413.x

    Article  PubMed  Google Scholar 

  24. Swartz BE, Simpkins F, Halgren E et al (1996) Visual working memory in primary generalized epilepsy: an 18FDG-PET study. Neurology 47:1203–1212

    Article  CAS  PubMed  Google Scholar 

  25. Tsume M, Kimura-Yoshida C, Mochida K et al (2012) Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem Biophys Res Commun 425:762–768. https://doi.org/10.1016/j.bbrc.2012.07.149

    Article  CAS  PubMed  Google Scholar 

  26. Vollmar C, O’Muircheartaigh J, Barker GJ et al (2011) Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain 134:1710–1719. https://doi.org/10.1093/brain/awr098

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vollmar C, O’Muircheartaigh J, Symms MR et al (2012) Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link. Neurology 78:1555–1559. https://doi.org/10.1212/WNL.0b013e3182563b44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wandschneider B, Hong S‑J, Bernhardt BC et al (2019) Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings. Neurology 93:e1272–e1280. https://doi.org/10.1212/WNL.0000000000008173

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wandschneider B, Vollmar C (2018) Besondere bildgebende Befunde bei primär generalisierten Epilepsien. Z Epileptol 31:144–147. https://doi.org/10.1007/s10309-018-0179-9

    Article  Google Scholar 

  30. Wandschneider B, Vollmar C, Woermann FG, Koepp MJ (2012) Bildgebung bei idiopathisch generalisierten Epilepsien. Z Epileptol 25:194–199. https://doi.org/10.1007/s10309-012-0259-1

    Article  Google Scholar 

  31. Wang Y, Berglund IS, Uppman M, Li T‑Q (2019) Juvenile myoclonic epilepsy has hyper dynamic functional connectivity in the dorsolateral frontal cortex. Neuroimage Clin 21:101604. https://doi.org/10.1016/j.nicl.2018.11.014

    Article  PubMed  Google Scholar 

  32. Woermann FG, Free SL, Koepp MJ et al (1999) Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain 122(1):2101–2108

    Article  PubMed  Google Scholar 

  33. Zhong C, Liu R, Luo C et al (2018) Altered structural and functional connectivity of juvenile myoclonic epilepsy: an fMRI study. Neural Plast 2018:7392187. https://doi.org/10.1155/2018/7392187

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vollmar.

Ethics declarations

Interessenkonflikt

C. Vollmar, B. Wandschneider und M. Koepp geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollmar, C., Wandschneider, B. & Koepp, M. Bildgebung beim Janz-Syndrom (juvenile myoklonische Epilepsie). Z. Epileptol. 33, 170–174 (2020). https://doi.org/10.1007/s10309-020-00324-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-020-00324-w

Schlüsselwörter

Keywords

Navigation