Skip to main content
Log in

Metabolische Epilepsien in der Neonatalperiode

Metabolic epilepsy in the neonatal period

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Angeborene neurometabolische Erkrankungen und epileptische Anfälle des Neugeborenen sind selten. Nichtsdestotrotz erfordern sie unmittelbare diagnostische Konsequenzen für eine zeitnahe ätiologische Klärung, um eine mögliche ursächliche Therapie einleiten zu können. Dargestellt werden die angeborenen neurometabolischen Erkrankungen, bei denen epileptische Anfälle auftreten. Auf richtungweisende EEG-Befunde, die eine Einordnung erleichtern, wird hingewiesen, und die diagnostischen Tests werden stichwortartig aufgeführt. Genetisch bedingte Enzephalopathien des Neugeborenen ohne richtungführende Stoffwechselbefunde werden nicht aufgenommen.

Abstract

Congenital neurometabolic disorders and epileptic seizures are rare in newborns. Nevertheless, immediate diagnosis is required in order to clarify the etiology and thus commence appropriate therapeutic treatment. The presentations includes congenital neurometabolic disorders in newborns involving epileptic seizures. Reference is made to electroencephalography (EEG) findings that facilitate diagnosis and a short description of the diagnostic tests is given. Genetically caused encephalopathy in newborns is not documented, only neurometabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Allegri G, Fernandes MJ, Salco FB et al (2010) Fumaric aciduria: an overview and the first Brazilian case report. J Inherit Metab Dis 33:411–419

    Article  PubMed  Google Scholar 

  2. Bakker HD (1994) The detection of molybdenum cofactor deficiency: clinical symptomatology and urinary metabolic profile. J Inherit Metab Dis 17:142–145

    Article  PubMed  Google Scholar 

  3. Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100:S3–S12

    Article  CAS  PubMed  Google Scholar 

  4. Brautigam C, Hyland K, Wevers R et al (2002) Clinical and laboratory findings in twins with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency. Neuropediatrics 33:113–117

    Article  CAS  PubMed  Google Scholar 

  5. Chen E, Nyhan WL, Jakobs C et al (1996) L-2-hydroxyglutaric aciduria: neuropathological correlations and first report of severe neurodegenerative disease and neonatal death. J Inherit Metab Dis 19:335–343

    Article  CAS  PubMed  Google Scholar 

  6. Ciardo F, Salerno C, Curatolo P (2001) Neurologic aspects of adenylosuccinate lyase deficiency. J Child Neurol 16:301–308

    CAS  PubMed  Google Scholar 

  7. Cohen B, Naviaux RK (2010) The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders. Methods 51:364–373

    Article  CAS  PubMed  Google Scholar 

  8. Cook P, Walker V (2011) Investigation of the child with an acute metabolic disorder. J Clin Pathol 64:181–191

    Article  CAS  PubMed  Google Scholar 

  9. Craigen WJ, Jakobs C, Sekul EA et al (1994) D-2-hydroxyglutaric aciduria in neonate with seizures and CNS dysfunction. Pediatr Neurol 10:49–53

    Article  CAS  PubMed  Google Scholar 

  10. Koning TJ de, Klomp LW, Oppel AC van et al (2004) Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet 364:2221–2222

    Article  PubMed  Google Scholar 

  11. Dinopoulos A, Matsubara Y, Kure S (2005) Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 86:61–69

    Article  CAS  PubMed  Google Scholar 

  12. El Sabbagh S, Lebre AS, Bahi-Buisson N et al (2010) Epileptic phenotypes in children with respiratory chain disorders. Epilepsia 51:1225–1235

    Article  Google Scholar 

  13. Gahr M, Connemann BJ, Schönfeldt-Leucona CJ et al (2013) Succinat-Semialdehyd-Dehydrogenase-Mangel: eine vererbbare neurometabolische Erkrankung. Fortschr Neurol Psychiatr 81:154–161

    Article  CAS  PubMed  Google Scholar 

  14. Gropman A (2003) Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 54:S66–S72

    Article  CAS  PubMed  Google Scholar 

  15. Haberlandt E, Canestrini C, Brunner-Krainz M et al (2009) Epilepsy in patients with propionic acidemia. Neuropediatrics 40:120–125

    Article  CAS  PubMed  Google Scholar 

  16. Hoover-Fong JE, Shah S, Hove JL van et al (2004) Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63:1847–1853

    Article  CAS  PubMed  Google Scholar 

  17. Jangouk P, Baranano KW, Raymond GV (2013) Peroxisomal diseases and epilepsy. In: Pearl PL (Hrsg) Inherited metabolic epilepsies. Demos, New York, S 317–328

  18. Jureka A, Zikanova M, Jurkiewicz E et al (2014) Attenuated adenylosuccinate lyase deficiency: a report of one case and a review of the literature. Neuropediatrics 45:50–55

    Google Scholar 

  19. Kaler SG, LIew CJ, Donsante A et al (2010) Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis 33:583–589

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kerrigan J, Aleck K et al (2000) Fumaric aciduria: clinical and imaging features. Ann Neurol 47:583–588

    Article  CAS  PubMed  Google Scholar 

  21. Khurana DS, Valencia I, Goldenthal M et al (2013) Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol 20:176–187

    Article  PubMed  Google Scholar 

  22. Kodama J, Fujisawa C, Bhadprasit W (2011) Pathology, clinical features and treatments of congenital copper metabolic disorders – focus on neurologic aspects. Brain Dev 33:243–251

    Article  PubMed  Google Scholar 

  23. Korein J, Sansaricq C, Kalminjn M et al (1994) Maple syrup urine disease: clinical, EEG and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. Int J Neurosci 79:21–45

    CAS  PubMed  Google Scholar 

  24. Korman SH, Gutman A (2002) Pitfalls in the diagnosis of glycine encephalopathy (non-ketotic hyperglycinemia). Dev Med Child Neurol 44:712–720

    Article  PubMed  Google Scholar 

  25. Kure S, Kato K, Dinopoulos A, Gail C et al (2006) Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat 27:343–352

    Article  CAS  PubMed  Google Scholar 

  26. Kurlemann G, Debus O, Schuierer G (1996) Dextromethorphan in molybdenum cofactor deficiency. Eur J Pediatr 155:422–423

    Article  CAS  PubMed  Google Scholar 

  27. Manegold C, Hoffmann GF, Degen I et al (2009) Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow up. J Inherit Metab Dis 32:371–380

    Article  CAS  PubMed  Google Scholar 

  28. Medina-Kauwe LK, Tobin AJ, De Meirleir L et al (1999) 4-aminobutyrate aminotransferase (GABA-transaminase) deficiency. J Inherit Metab Dis 22:414–427

    Article  CAS  PubMed  Google Scholar 

  29. Misra VK, Struys EA, O’brien W et al (2005) Phenotypic heterogeneity in the presentation of D-2-hydroxyglutaric aciduria in monozygotic twins. Mol Genet Metab 86:200–205

    Article  CAS  PubMed  Google Scholar 

  30. Pearl PL, Nowotny EJ, Acosta MT et al (2003) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54:S73–S80

    Article  CAS  PubMed  Google Scholar 

  31. Pearl PL (2009) New treatment paradigms in neonatal metabolic epilepsies. J Inherit Metab Dis 32:2014–2213

    Google Scholar 

  32. Reiss J, Hahnewald R (2011) Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32:10–18

    Article  CAS  PubMed  Google Scholar 

  33. Santo RP, Naviaux RK (2010) Polymerase gamma disease through the ages. Dev Disabil Res Rev 16:163–174

    Article  Google Scholar 

  34. Siintola E, Partanen S, Stroemme P et al (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129:1438–1445

    Article  PubMed  Google Scholar 

  35. Skjei KL, Dlugos DJ (2011) The evaluation of treatment-resistant epilepsy. Semin Pediatr Neurol 18:150–170

    Article  PubMed  Google Scholar 

  36. Slot HM, Overweg-Plandsoen WC, Bakker HD et al (1993) Molybdenum-cofactor deficiency: an easily missed cause of neonatal convulsions. Neuropediatrics 24:139–142

    Article  CAS  PubMed  Google Scholar 

  37. Struys EA (2006) D-2-Hydroxyglutaric aciduria: unravelling the biochemical pathway and the genetic defect. J Inherit Metab Dis 29:21–29

    Article  CAS  PubMed  Google Scholar 

  38. Summar ML, Dobbelaere D, Brusilow S et al (2008) Diagnosis, symptoms, frequency and mortality of 260 patients with urea cycle disorders from a 21-year, multicenter study of acute hyperammonaemic episodes. Acta Paediatr 97:1420–1425

    Article  PubMed Central  PubMed  Google Scholar 

  39. Swoboda KJ, Saul JP, McKenna CE et al (2003) L-amino acid decarboxylase deficiency – overview of clinical features and outcome. Ann Neurol 54:S49–S55

    Article  CAS  PubMed  Google Scholar 

  40. Tabatabiel L, Klomp LW, Berger R et al (2010) L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99:256–262

    Article  Google Scholar 

  41. Tan WH, Eichler FS, Hoda S et al (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766

    Article  PubMed  Google Scholar 

  42. Turner Z, Moller LB (2010) Menkes disease. Eur J Hum Genet 18:511–518

    Article  Google Scholar 

  43. Knaap MS van der, Jakobs C, Hoffmann GF et al (1999) D-2-hydroxyglutaric aciduria: further clinical delineation. J Inherit Metab Dis 22:404–413

    Article  PubMed  Google Scholar 

  44. Van den Berg F, Bosschaart AN, Hageman G et al (1998) Adenylosuccinase deficiency with neonatal onset severe epileptic seizures and sudden death. Neuropediatrics 29:51–53

    Article  Google Scholar 

  45. Veldman A, Santamaria-Araujo JA, Sollazzo S et al (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:1249–1254

    Article  Google Scholar 

  46. Van Kuilenburg AB, Vreken P, Abeling CG et al (1999) Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Hum Genet 104:1–9

    Article  Google Scholar 

  47. Wang IJ, Chu SY, Wang CY et al (2003) Maple syrup urine disease presenting with neonatal status epilepticus: report of one case. Acta Paediatr Taiwan 44:246–248

    PubMed  Google Scholar 

  48. Yu JY, Pearl PL (2013) Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat 2013:124934. http://dx.doi.org/10.1155/2013/124934

  49. Zafeiriou DI, Augoustides-Savvopoulou P, Haas D et al (2007) Ethylmalonic encephalopathy: clinical and biochemical observations. Neuropediatrics 38:78–82

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. G. Kurlemann gibt an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kurlemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurlemann, G. Metabolische Epilepsien in der Neonatalperiode. Z. Epileptol. 27, 162–169 (2014). https://doi.org/10.1007/s10309-014-0369-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-014-0369-z

Schlüsselwörter

Keywords

Navigation