Skip to main content
Log in

Bildgebung bei epileptischen Enzephalopathien

Imaging of epileptic encephalopathies

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Epileptische Enzephalopathien (EE) gehören zu der Gruppe von Epilepsien, die mit ausgeprägten kognitiven Defiziten und Verhaltensstörungen infolge epileptischer Aktivität einhergehen. Trotz großer Bedeutung von EE für die Entwicklung des betroffenen Kindes und dessen psychosozialer Anpassung sind bislang Mechanismen kognitiver Defizite bei EE unzureichend untersucht worden. Der vorliegende Überblick fasst Studien zusammen, die zum Ziel hatten, spezifische neuronale Netzwerke bei EE zu beschreiben. Diese zeigen, dass, obwohl epileptische Aktivität bei EE in unterschiedlichen Gehirnregionen generiert werden kann, spezifische Propagationswege und Netzwerke existieren, die sehr charakteristisch für die jeweilige Art der Enzephalopathie sind. Bei einigen EE scheint die epileptische Aktivität die Integrität des Ruhe(„Default-mode“)-Netzwerks zu beeinträchtigen und möglicherweise über diesen Mechanismus mit kognitiven Funktionen zu interferieren. Darüber hinaus liegen den EE weitere Mechanismen zugrunde, z. B. eine gestörte Konnektivität zwischen Gehirnarealen, die an der Steuerung kognitiver Funktionen beteiligt sind, oder Beeinträchtigungen der Verbindungen bzw. Aktivität in thalamokortikalen Regelkreisen.

Abstract

Epileptic encephalopathies (EE) belong to the group of epilepsies which are associated with expressed cognitive and behavioral disturbances subsequent to epileptic activity. Despite the great importance of EE in the development and psychosocial adaptation of affected children, the mechanisms of cognitive deficits in EE have so far been insufficiently investigated. This review article summarizes the various neuroimaging studies which have tried to describe specific neuronal networks in EE. The results show that although epileptic activity in EE can be generated in different brain regions, specific propagation pathways and networks exist which are very characteristic for each different form of encephalopathy. In some forms of EE the epileptic activity seems to impair the integrity of the default mode network and possibly to interfere with cognitive function through this mechanism. Furthermore, there are further mechanisms underlying EE, e.g. abnormal connectivity patterns between brain regions which participate in the control of cognitive functions and impairment of the connections and activities in the thalamocortical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Aghakhani Y, Bagshaw AP, Benar CG et al (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:1127–1144

    Article  CAS  PubMed  Google Scholar 

  2. Arzimanoglou A, French J, Blume WT et al (2009) Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol 8:82–93

    Article  PubMed  Google Scholar 

  3. Avanzini G, Manganotti P, Meletti S et al (2012) The system epilepsies: a pathophysiological hypothesis. Epilepsia 53:771–778

    Article  PubMed  Google Scholar 

  4. Bettus G, Guedj E, Joyeux F et al (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30:1580–1591

    Article  PubMed  Google Scholar 

  5. Bladin PF (1985) Adult Lennox-Gastaut syndrome: features and diagnostic problems. Clin Exp Neurol 21:93–104

    CAS  PubMed  Google Scholar 

  6. Boly M, Phillips C, Tshibanda L et al (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function. Ann N Y Acad Sci 1129:119–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Broyd SJ, Demanuele C, Debener S et al (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  PubMed  Google Scholar 

  8. Capovilla G, Berg AT, Cross JH et al (2009) Conceptual dichotomies in classifying epilepsies: partial versus generalized and idiopathic versus symptomatic (April 18–20, 2008, Monreale, Italy). Epilepsia 50:1645–1649

    Article  Google Scholar 

  9. Chiron C, Dulac O, Bulteau C et al (1993) Study of regional cerebral blood flow in West syndrome. Epilepsia 34:707–715

    Article  CAS  PubMed  Google Scholar 

  10. Chugani HT, Shewmon DA, Sankar R (1992) Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol 31:212–219

    Article  CAS  PubMed  Google Scholar 

  11. De Tiege X, Goldman S, Laureys S et al (2004) Regional cerebral glucose metabolism in epilepsies with continuous spikes and waves during sleep. Neurology 63:853–857

    Article  Google Scholar 

  12. De Tiege X, Harrison S, Laufs H et al (2007) Impact of interictal epileptic activity on normal brain function in epileptic encephalopathy: an electroencephalography-functional magnetic resonance imaging study. Epilepsy Behav 11:460–465

    Article  Google Scholar 

  13. De Tiege X, Ligot N, Goldman S et al (2008) Metabolic evidence for remote inhibition in epilepsies with continuous spike-waves during sleep. NeuroImage 40:802–810

    Article  Google Scholar 

  14. Dulac O (2001) Epileptic encephalopathy. Epilepsia 42:23–26

    Article  PubMed  Google Scholar 

  15. Dulac O (2001) What is West syndrome? Brain Dev 23:447–452

    Article  CAS  PubMed  Google Scholar 

  16. Eichele T, Debener S, Calhoun VD et al (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 105:6173–6178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ferrie CD, Marsden PK, Maisey MN, Robinson RO (1997) Cortical and subcortical glucose metabolism in childhood epileptic encephalopathies. J Neurol Neurosurg Psych 63:181–187

    Article  CAS  Google Scholar 

  18. Gaggero R, Caputo M, Fiorio P et al (1995) SPECT and epilepsy with continuous spike waves during slow-wave sleep. Childs Nerv Syst 11:154–160

    Article  CAS  PubMed  Google Scholar 

  19. Gotman J, Grova C, Bagshaw A et al (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A 102:15236–15240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hamandi K, Salek-Haddadi A, Laufs H et al (2006) EEG-fMRI of idiopathic and secondary generalized epilepsies. NeuroImage 31:1700–1710

    Article  PubMed  Google Scholar 

  21. Hrachovy RA, Frost JD (2003) Infantile epileptic encephalopathy with hypsarrhythmia. J Clin Neurophysiol 20:408–425

    Article  PubMed  Google Scholar 

  22. Japaridze N, Muthuraman M, Moeller F et al (2013) Neuronal networks in West syndrome as revealed by source analysis and renormalized partial directed coherence. Brain Topogr 26:157–170

    Article  PubMed  Google Scholar 

  23. Korinthenberg R, Bauer-Scheid C, Burkart P et al (2004) 18FDG-PET in epilepsies of infantile onset with pharmacoresistant generalised tonic-clonic seizures. Epilepsy Res 60:53–61

    Article  CAS  PubMed  Google Scholar 

  24. Luat AF, Asano E, Juhasz C et al (2005) Relationship between brain glucose metabolism positron emission tomography (PET) and electroencephalography (EEG) in children with continuous spike-and-wave activity during slow-wave sleep. J Child Neurol 20:682–690

    Article  PubMed  Google Scholar 

  25. Maquet P, Hirsch E, Metz-Lutz MN et al (1995) Regional cerebral glucose metabolism in children with deterioration of one or more cognitive functions and continuous spike-and-wave discharges during sleep. Brain 118:1497–1520

    Article  PubMed  Google Scholar 

  26. McTague A, Cross JH (2013) Treatment of epileptic encephalopathies. CNS Drugs 27:175–184

    Article  CAS  PubMed  Google Scholar 

  27. Metsähonkala L, Gaily E, Rantala H et al (2002) Focal and global cortical hypometabolism in patients with newly diagnosed infantile spasms. Neurology 58:1646–1651

    Article  PubMed  Google Scholar 

  28. Moehring J, Spiczak S von, Moeller F et al (2013) EEG-fMRI study in Dravet syndrome patients with SCN1A mutations: one gene – individual results. Epilepsia (Epub ahead of print)

  29. Moehring J, Kroeher B, Galka A et al (2013) Multifocal epilepsy is associated with increased functional connectivity. Epilepsia (submitted)

  30. Moeller F, Siebner H, Wolff S et al (2008) EEG-fMRI in children with untreated childhood absence epilepsy. Epilepsia 49:1510–1519

    Article  PubMed  Google Scholar 

  31. Moeller F, Siebner H, Wolff S et al (2008) Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. NeuroImage 39:1839–1849

    Article  PubMed  Google Scholar 

  32. Morrell F, Whisler WW, Smith MC et al (1995) Landau-Kleffner syndrome: treatment with subpial intracortical transection. Brain 118:1529–1546

    Article  PubMed  Google Scholar 

  33. Paetau R (2009) Magnetoencephalography in Landau-Kleffner syndrome. Epilepsia 50(Suppl 7):51–54

    Article  PubMed  Google Scholar 

  34. Pillay N, Archer JS, Badawy RA et al (2013) Networks underlying paroxysmal fast activity and slow spike and wave in Lennox-Gastaut syndrome. Neurology 81:665–673

    Article  PubMed  Google Scholar 

  35. Pizoli CE, Shah MN, Snyder AZ et al (2011) Resting-state activity in development and maintenance of normal brain function. Proc Natl Acad Sci U S A 108:11638–11643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  37. Rougier A, Claverie B, Pedespan JM et al (1997) Callosotomy for intractable epilepsy: overall outcome. J Neurosurg Sci 41:51–57

    CAS  PubMed  Google Scholar 

  38. Samadani U, Baltuch GH (2007) Anterior thalamic nucleus stimulation for epilepsy. Acta Neurochir Suppl 97:343–346

    Article  CAS  PubMed  Google Scholar 

  39. Siniatchkin M, Baalen A van, Jacobs J et al (2007) Different neuronal networks are associated with spikes and slow activity in hypsarrhythmia. Epilepsia 48:2312–2321

    PubMed  Google Scholar 

  40. Siniatchkin M, Groening K, Moehring J et al (2010) Neuronal networks in children with continuous spikes and waves during slow sleep. Brain 133:2798–2813

    Article  PubMed  Google Scholar 

  41. Siniatchkin M, Coropceanu D, Moeller F et al (2011) EEG-fMRI reveals activation of brainstem and thalamus in patients with Lennox-Gastaut syndrome. Epilepsia 52:766-774

    Article  PubMed  Google Scholar 

  42. Sobel DF, Aung M, Otsubo H, Smith MC (2000) Magnetoencephalography in children with Landau-Kleffner syndrome and acquired epileptic aphasia. Am J Neuroradiol 21:301–307

    CAS  PubMed  Google Scholar 

  43. Van Bogaert P, Urbain C, Galer S et al (2012) Impact of focal interictal epileptiform discharges on behavior and cognition in children. Neurophysiol Clin 42:53–58

    Article  Google Scholar 

  44. Velasco M, Velasco F, Gardea G et al (1997) Polygraphic characterization of the sleep epilepsy patterns in a hydranencephalic child with severe generalized seizures of Lennox-Gastaut syndrome. Arch Med Res 28:297–302

    CAS  PubMed  Google Scholar 

  45. Velasco AL, Velasco F, Jimenez F et al (2006) Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia 47:1203–1212

    Article  PubMed  Google Scholar 

  46. Zhang Z, Lu G, Zhong Y et al (2009) Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci Lett 458:97–101

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Lu G, Zhong Y et al (2010) Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res 1323:152–160

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Siniatchkin, K. Gröning, F. Moeller, N. Japaridze und U. Stephani geben an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siniatchkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siniatchkin, M., Gröning, K., Moeller, F. et al. Bildgebung bei epileptischen Enzephalopathien. Z. Epileptol. 27, 100–104 (2014). https://doi.org/10.1007/s10309-013-0354-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-013-0354-y

Schlüsselwörter

Keywords

Navigation