Skip to main content
Log in

Mode profiles and dispersion properties of silica/air photonic bandgap fibers

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

With the advent of microstructured optical fibers, the possibility of guiding light in a low-index core by the photonic bandgap effect has opened up. In this paper, we review the types and properties of photonic bandgap (PBG) fibers realised or suggested in the literature. Particular attention is given to a description of the dispersion properties and their relation to the evolution of the field distribution. Since PBG fibers trap light in a low-index core region over finite frequency intervals, the dispersion properties of these fibers turn out to be quite distinct from those of conventional or microstructured fibers with high-index cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Barkou InstitutionalAuthorNameJ. Broeng, A. Bjarklev (1999) ArticleTitleNovel silica/air photonic crystal fiber allowing waveguiding by the true photonic bandgap effect Opt. Lett. 21 1547–1549

    Google Scholar 

  2. J. C. Knight InstitutionalAuthorNameT. A. Birks, P. St. J. Russell (1998) ArticleTitleProperties of photonic crystal fiber and the effective index model J. Opt. Soc. A 15 3 Occurrence Handle1:STN:280:DyaK1c7mtFKitw%3D%3D Occurrence Handle10.1364/JOSAA.15.000748

    Article  CAS  Google Scholar 

  3. J. Broeng InstitutionalAuthorNameD. Mogilevstev, Stig E. Barkou and A. Bjarklev (1998) ArticleTitlePhotonic crystal fibers: A new class of optical waveguides Opt. Fiber Technol. 5 305–330 Occurrence Handle10.1006/ofte.1998.0279 Occurrence Handle1999OptFT...5..305B

    Article  ADS  Google Scholar 

  4. N. Venkataraman, M. T. Gallagher, C. M. Smith, D. Müller, J. A. West, K. W. Koch and J. C. Fajardo, “Low loss (13 dB/km) air core photonic bandgap fiber”, 28th European Conference on Optical Communication, ECOC ‘02, September 2002, Copenhagen, Denmark, post-deadline paper PD1.1

  5. E. Yablonovitch (1987) ArticleTitleInhibited spontaneous emission in solid-state physics and electronics Phys. Rev. Lett. 58 IssueID20 2059–2062 Occurrence Handle10.1103/PhysRevLett.58.2059 Occurrence Handle1:CAS:528:DyaL2sXktFGit7Y%3D Occurrence Handle10034639 Occurrence Handle1987PhRvL..58.2059Y

    Article  CAS  PubMed  ADS  Google Scholar 

  6. S. John (1987) ArticleTitleStrong localizations of photons in certain disordered dielectric superlattices Phys. Rev. Lett. 58 IssueID23 2486–2489 Occurrence Handle10.1103/PhysRevLett.58.2486 Occurrence Handle1:CAS:528:DyaL2sXks1KksL0%3D Occurrence Handle10034761 Occurrence Handle1987PhRvL..58.2486J

    Article  CAS  PubMed  ADS  Google Scholar 

  7. J. D. Joannopoulos, J.N. Winn, and R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995)

  8. A. A. Maradudin InstitutionalAuthorNameA. R. McGurn (1994) ArticleTitleOut of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium Electron. Lett. 41 IssueID2 275–284 Occurrence Handle1:CAS:528:DyaK2cXlsVChu70%3D

    CAS  Google Scholar 

  9. T. A. Birks InstitutionalAuthorNameP. J. Roberts, P. S. J. Russell, D. M. Atkin, amd T. J. Shepherd (1995) ArticleTitleFull 2-d photonic bandgaps in silica/air structures Electron. Lett. 31 IssueID22 1941–1943 Occurrence Handle10.1049/el:19951306 Occurrence Handle1:CAS:528:DyaK28Xis1GmtQ%3D%3D

    Article  CAS  Google Scholar 

  10. J. C. Knight InstitutionalAuthorNameJ. Broeng, T. A. Birks, P. St. J. Russell (1998) ArticleTitlePhotonic band gap optical fiber: a new class of light guide Science 282 IssueID5393 1476–1478 Occurrence Handle10.1126/science.282.5393.1476 Occurrence Handle1:CAS:528:DyaK1cXns1ymsrg%3D Occurrence Handle9822375

    Article  CAS  PubMed  Google Scholar 

  11. Stig E. Barkou, Jes Broeng and Anders Bjarklev, “Dispersion properties of photonic bandgap guiding fibers”, Optical Fiber Communication Conference (OFC99), Friday pp. 117–119, FG5, 1999

  12. D. Ferrarini InstitutionalAuthorNameL. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri (2002) ArticleTitleLeakage properties of photonic crystal fibers Opt. Express 10 1314–1319 Occurrence Handle2002OExpr..10.1314F

    ADS  Google Scholar 

  13. J. Lægsgaard InstitutionalAuthorNameN. A. Mortensen, and A. Bjarklev (2003) ArticleTitleMode areas and field energy distribution in honeycomb photonic bandgap fibers J. Opt. Soc. Am. B 20 2037–2045 Occurrence Handle2003OSAJB..20.2037L

    ADS  Google Scholar 

  14. J. Broeng and A. Bjarklev, “Photonic Bandgap Fibers”, LEOS’99, invited paper WAA1, pp. 615–16 (San Francisco, California, USA), November 1999

  15. J. Lægsgaard InstitutionalAuthorNameN. A. Mortensen, J. Riishede, and A. Bjarklev (2003) ArticleTitleMaterial effects in airguiding photonic bandgap fibers J. Opt. Soc. Am. B 20 2046–2051 Occurrence Handle2003OSAJB..20.2046L

    ADS  Google Scholar 

  16. A. Ferrando InstitutionalAuthorNameJ. J. Miret (2001) ArticleTitleSingle-polarization single-mode intraband guidance in supersquare photonic crystal fibers Appl. Phys. Lett. 78 3184–3186 Occurrence Handle10.1063/1.1353837 Occurrence Handle1:CAS:528:DC%2BD3MXjs1Ghtbg%3D Occurrence Handle2001ApPhL..78.3184F

    Article  CAS  ADS  Google Scholar 

  17. J. Broeng, “Photonic crystal fibres”, Ph.D. thesis, Technical University of Denmark, 1999

  18. M. J. Steel InstitutionalAuthorNameT. P. White, C. Martijn de Sterke, R. C. McPhedran and L. C. Botten (2001) ArticleTitleSymmetry and degeneracy in microstructured optical fibers Opt. Lett. 26 488–490 Occurrence Handle2001OptL...26..488S

    ADS  Google Scholar 

  19. Tanya M. Monro InstitutionalAuthorNameWalter Belardi, Kentaro Ferusawa, Joanne C. Baggett, N. G. R. Broderick and D. J. Ricahrdson (2001) ArticleTitleSensing with microstructured optical fibres Meas. Sci. Technol. 12 854–858 Occurrence Handle10.1088/0957-0233/12/7/318 Occurrence Handle1:CAS:528:DC%2BD3MXltFahtLc%3D Occurrence Handle2001MeScT..12..854M

    Article  CAS  ADS  Google Scholar 

  20. Allan W. Snyder and John D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000)

  21. J. Lægsgaard InstitutionalAuthorNameA. Bjarklev and S. E. Barkou Libori (2003) ArticleTitleChromatic dispersion in photonic crystal fibers: Fast and accurate scheme for calculation J. Opt. Soc. Am. B 20 443–448 Occurrence Handle2003OSAJB..20..443L

    ADS  Google Scholar 

  22. A. Ferrando InstitutionalAuthorNameE. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés (2001) ArticleTitle Designing the properties of dispersion-flattened photonic crystal fibers Opt. Express 9 IssueID13 687–697 Occurrence Handle10.1364/OE.9.000687 Occurrence Handle2001OExpr...9..687F

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libori, S., Lægsgaard, . Mode profiles and dispersion properties of silica/air photonic bandgap fibers. J Optic Comm Rep 1, 266–282 (2004). https://doi.org/10.1007/s10297-004-0019-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-004-0019-8

Keywords

Navigation