Skip to main content
Log in

Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pseudomonas putida was metabolically engineered to produce medium chain length polyhydroxyalkanoate (mcl-PHA) from acetate, a promising carbon source to achieve cost-effective microbial processes. As acetate is known to be harmful to cell growth, P. putida KT2440 was screened from three Pseudomonas strains (P. putida KT2440, P. putida NBRC14164, and P. aeruginosa PH1) as the host with the highest tolerance to 10 g/L of acetate in the medium. Subsequently, P. putida KT2440 was engineered by amplifying the acetate assimilation pathway, including overexpression of the acs (encoding acetyl-CoA synthetase) route and construction of the ackA-pta (encoding acetate kinase-phosphotransacetylase) pathway. The acs overexpressing P. putida KT2440 showed a remarkable increase of mcl-PHA titer (+ 92%), mcl-PHA yield (+ 50%), and cellular mcl-PHA content (+ 43%) compared with the wild-type P. putida KT2440, which indicated that acetate could be a potential substrate for biochemical production of mcl-PHA by engineered P. putida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agnew DE, Pfleger BF (2013) Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem Eng Sci 103:58–67

    Article  CAS  Google Scholar 

  2. Belda E, Van Heck RGA, José Lopez-Sanchez M et al (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18(10):3403–3424

    Article  CAS  PubMed  Google Scholar 

  3. Bernal V, Castaño-Cerezo S, Cánovas M (2016) Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond. Appl Microbiol Biotechnol 100(21):8985–9001

    Article  CAS  PubMed  Google Scholar 

  4. Blattner FR, Plunkett G, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  PubMed  Google Scholar 

  5. Borrero-de Acuña JM, Bielecka A, Häussler S et al (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Fact 13:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54(8):1977–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cerrone F, Davis R, Kenny ST et al (2015) Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresour Technol 191:45–52

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Li W, Zhang ZZ, Tang TW, Li ZJ (2018) Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source. Microb Cell Fact 17(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Article  CAS  PubMed  Google Scholar 

  10. Chong H, Yeow J, Wang I, Song H, Jiang R (2013) Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE 8(2):e77422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis R, Duane G, Kenny ST, Cerrone F, Guzik MW, Babu RP, Casey E, O’Connor KE (2015) High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnol Bioeng 112(4):725–733

    Article  CAS  PubMed  Google Scholar 

  12. Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150(4):202–209

    Article  CAS  PubMed  Google Scholar 

  13. Escapa IF, Del Cerro C, Garcia JL, Prieto MA (2013) The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 15(1):93–110

    Article  CAS  PubMed  Google Scholar 

  14. Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, González V, Bolivar F, Gosset G, Martinez A (2012) Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96(5):1291–1300

    Article  PubMed  CAS  Google Scholar 

  15. Gillis J, Ko K, Ramsay JA, Ramsay BA (2018) Potential for mcl-PHA production from nonanoic and azelaic acids. Can J Microbiol 64:11–19

    Article  CAS  PubMed  Google Scholar 

  16. Guzik MW, Kenny ST, Duane GF et al (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol 98(9):4223–4232

    Article  CAS  PubMed  Google Scholar 

  17. Hu P, Chakraborty S, Kumar A, Woolston B, Liu H, Emerson D, Stephanopoulos G (2016) Integrated bioprocess for conversion of gaseous substrates to liquids. Proc Natl Acad Sci USA 113(14):3773

    Article  CAS  PubMed  Google Scholar 

  18. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183(21):6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  20. Lee GN, Na J (2013) Future of microbial polyesters. Microb Cell Fact 12(1):1–4

    Article  CAS  Google Scholar 

  21. Lee HM, Jeon BY, Oh MK (2016) Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnol Bioprocess Eng 21(3):402–407

    Article  CAS  Google Scholar 

  22. Lee SY (2015) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14

    Article  Google Scholar 

  23. Lemos PC, Serafim LS, Reis M (2004) Polyhydroxyalkanoates production by activated sludge in a SBR using acetate and propionate as carbon sources. Water Sci Technol 50(10):189–194

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  25. Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5(11):1299

    Article  CAS  PubMed  Google Scholar 

  26. Li ZB, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44(10):2865–2879

    Article  CAS  PubMed  Google Scholar 

  27. Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenergy 74:268–279

    Article  CAS  Google Scholar 

  28. Mozejko-Ciesielska J, Dabrowska D, Szalewska-Palasz A, Ciesielski S (2017) Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis. AMB Express 7(1):92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins VDS, Fouts DE, Gill SR, Pop M, Holmes M (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808

    Article  CAS  PubMed  Google Scholar 

  30. Ni C, Wu X, Jin D, Du D, Ni C, Wu X, Jin D, Du D (2014) Facile recovery of acetic acid from waste acids of electronic industry via a partial neutralization pretreatment (PNP)—distillation strategy. Sep Purif Technol 132:23–26

    Article  CAS  Google Scholar 

  31. Oehmen A, Pinto FV, Silva V, Albuquerque MGE, Reis MAM (2014) The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses. Eng Life Sci 14(2):143–152

    Article  CAS  Google Scholar 

  32. Poblete-Castro I, Binger D, Rodrigues A, Becker J, Dos Santos V, Wittmann C (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15(1):113–123

    Article  CAS  PubMed  Google Scholar 

  33. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R 72(3):29–47

    Article  CAS  Google Scholar 

  34. Rajaraman E, Agarwal A, Crigler J, Seipeltthiemann R, Altman E, Eiteman MA (2017) Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Appl Microbiol Biotechnol 100(17):1–9

    Google Scholar 

  35. Sambrook J (2001) Molecular cloning: a laboratory manual. Anal Biochem 186(1):182–183

    Google Scholar 

  36. Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gaillard JL, Corroler D (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116(3):302–308

    Article  CAS  PubMed  Google Scholar 

  37. Sin MC, Tan IKP, Annuar MSM, Gan SN (2012) Thermal behavior and thermodegradation kinetics of poly(vinyl chloride) plasticized with polymeric and oligomeric medium-chain-length poly(3-hydroxyalkanoates). Polym Degrad Stab 97(11):2118–2127

    Article  CAS  Google Scholar 

  38. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419

    Article  PubMed  Google Scholar 

  39. Switch TA (2005) The acetate switch. Mol Biol Rev 69(1):12–50

    Article  CAS  Google Scholar 

  40. Valappil SP, Rai R, Bucke C, Roy I (2008) Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol 104(6):1624–1635

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Tappel RC, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78(2):519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30(30):59–65

    Article  CAS  PubMed  Google Scholar 

  43. Xiao Y, Ruan Z, Liu Z, Wu SG, Varman AM, Liu Y, Tang YJ (2013) Engineering Escherichia coli to convert acetic acid to free fatty acids. Biochem Eng J 76(28):60–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the kind donation of E. coli MG1655 from Dr. Tao Chen and the plasmid pBBR1MCS-2 from Dr. Yingjin Yuan of Tianjin University (China). The authors wish to acknowledge the financial support provided by the National Basic Research Program of China (Grant No. 2014CB745100), the National Natural Science Foundation of China (Grant No. 21576197), Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 18JCYBJC23500), and Tianjin Key Research & Development Program (Grant No. 16YFXTSF00460). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, S. & Jia, X. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440. J Ind Microbiol Biotechnol 46, 793–800 (2019). https://doi.org/10.1007/s10295-019-02159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02159-5

Keywords

Navigation