Skip to main content
Log in

Streamlined assessment of membrane permeability and its application to membrane engineering of Escherichia coli for octanoic acid tolerance

  • Biotechnology Methods - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The economic viability of bio-production processes is often limited by damage to the microbial cell membrane and thus there is a demand for strategies to increase the robustness of the cell membrane. Damage to the microbial membrane is also a common mode of action by antibiotics. Membrane-impermeable DNA-binding dyes are often used to assess membrane integrity in conjunction with flow cytometry. We demonstrate that in situ assessment of the membrane permeability of E. coli to SYTOX Green is consistent with flow cytometry, with the benefit of lower experimental intensity, lower cost, and no need for a priori selection of sampling times. This method is demonstrated by the characterization of four membrane engineering strategies (deletion of aas, deletion of cfa, increased expression of cfa, and deletion of bhsA) for their effect on octanoic acid tolerance, with the finding that deletion of bhsA increased tolerance and substantially decreased membrane leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1(1):38–42. https://doi.org/10.1016/j.coche.2011.08.003

    Article  CAS  Google Scholar 

  2. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 1:1. https://doi.org/10.1186/1754-6834-2-26

    Article  CAS  Google Scholar 

  3. Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23(8):498–508. https://doi.org/10.1016/j.tim.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  4. Wu WZ, Long MR, Zhang XL, Reed JL, Maravelias CT (2018) A framework for the identification of promising bio-based chemicals. Biotechnol Bioeng 115(9):2328–2340. https://doi.org/10.1002/bit.26779

    Article  CAS  PubMed  Google Scholar 

  5. Jia H, Fan Y, Feng X, Li C (2014) Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol. 2:44

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang SZ, Sun XX, Yuan QP (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309. https://doi.org/10.1016/j.biortech.2018.03.064

    Article  CAS  PubMed  Google Scholar 

  7. Jin T, Chen Y, Jarboe LR (2016) Evolutionary methods for improving the production of biorenewable fuels and chemicals, in biotechnology for biofuels production and optimization. C. Eckert and C. Trinh, eds. Elsevier

  8. Liu P, Chernyshov A, Najdi T, Fu Y, Dickerson J, Sandmeyer S, Jarboe L (2013) Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(7):3239–3251. https://doi.org/10.1007/s00253-013-4773-5

    Article  CAS  PubMed  Google Scholar 

  9. Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97(18):8317–8327. https://doi.org/10.1007/s00253-013-5113-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lian J, McKenna R, Rover MR, Nielsen DR, Wen Z, Jarboe LR (2016) Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. J Ind Microbiol Biotechnol 43(5):595–604

    Article  CAS  PubMed  Google Scholar 

  11. Bui LM, Lee JY, Geraldi A, Rahman Z, Lee JH, Kim SC (2015) Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. J Biotechnol 204:33–44. https://doi.org/10.1016/j.jbiotec.2015.03.025

    Article  CAS  Google Scholar 

  12. Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14(5):579–590. https://doi.org/10.1016/j.ymben.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  13. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68(5):524–530. https://doi.org/10.1002/(sici)1097-0290(20000605)68:5%3c524:aid-bit6%3e3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  14. Jarboe LR, Klauda JB, Chen Y, Davis KM, Santoscoy MC (2018) Engineering the microbial cell membrane to improve bioproduction, in green polymer chemistry: new products, processes and applications, H.N. Cheng, R.A. Gross, and P.B. Smith, eds. American Chemical Society: Washington, DC

  15. Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77(22):8114–8128. https://doi.org/10.1128/aem.05421-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS ONE. https://doi.org/10.1371/journal.pone.0054031

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jin T, Rover MR, Petersen EM, Chi Z, Smith RG, Brown RC, Wen Z, Jarboe LR (2017) Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. J Ind Microbiol Biotechnol 44:1279–1292

    Article  CAS  PubMed  Google Scholar 

  18. Sherkhanov S, Korman TP, Bowie JU (2014) Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 25:1–7. https://doi.org/10.1016/j.ymben.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  19. Tan ZG, Black W, Yoon JM, Shanks JV, Jarboe LR (2017) Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF. Microbial Cell Fact. https://doi.org/10.1186/s12934-017-0650-8

    Article  Google Scholar 

  20. Tan ZG, Khakbaz P, Chen YX, Lombardo J, Yoon JM, Shanks JV, Klauda JB, Jarboe LR (2017) Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metab Eng 44:1–12. https://doi.org/10.1016/j.ymben.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Tan ZG, Yoon JM, Nielsen DR, Shanks JV, Jarboe LR (2016) Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng 35:105–113. https://doi.org/10.1016/j.ymben.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  22. Ahn JH, Lee JA, Bang J, Lee SY (2018) Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens. J Ind Microbiol Biotechnol 45(7):555–566. https://doi.org/10.1007/s10295-018-2016-6

    Article  CAS  PubMed  Google Scholar 

  23. Westbrook AW, Ren X, Moo-Young M, Chou CP (2018) Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng 115(1):216–231. https://doi.org/10.1002/bit.26459

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher E, Pilizota T, Davies PR, McVey A, French CE (2016) Characterization of the effects of n-butanol on the cell envelope of E. coli. Appl Microbiol Biotechnol. 100(22):9653–9659. https://doi.org/10.1007/s00253-016-7771-6

    Article  CAS  PubMed  Google Scholar 

  25. Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Appl Environ Microbiol 63(6):2421–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mortimer FC, Mason DJ, Gant VA (2000) Flow cytometric monitoring of antibiotic-induced injury in Escherichia coli using cell-impermeant fluorescent probes. Antimicrob Agents Chemother 44(3):676–681. https://doi.org/10.1128/aac.44.3.676-681.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suller MTE, Lloyd D (1999) Fluorescence monitoring of antibiotic-induced bacterial damage using flow cytometry. Cytometry 35(3):235–241. https://doi.org/10.1002/(sici)1097-0320(19990301)35:3%3c235:aid-cyto6%3e3.0.co;2-0

    Article  CAS  PubMed  Google Scholar 

  28. Cory M, McKee DD, Kagan J, Henry DW, Miller JA (1985) Design, synthesis, and DNA-binding properties of bifunctional intercalator—comparison of polymethylene and diphenyl ether chains connecting phenanthridine. J Am Chem Soc 107(8):2528–2536. https://doi.org/10.1021/ja00294a054

    Article  CAS  Google Scholar 

  29. Jernaes MW, Steen HB (1994) Staining of Escherichia coli for flow cytometry—influx and efflux of ethidium bromide. Cytometry 17(4):302–309. https://doi.org/10.1002/cyto.990170405

    Article  CAS  PubMed  Google Scholar 

  30. Bertuzzi A, Dagnano I, Gandolfi A, Graziano A, Starace G, Ubezio P (1990) Study of propidium iodide binding to DNA in intact cells by flow cyometry. Cell Biophys 17(3):257–267. https://doi.org/10.1007/bf02990721

    Article  CAS  PubMed  Google Scholar 

  31. Matsuzaki T, Suzuki T, Fujikura K, Takata K (1997) Nuclear staining for laser confocal microscopy. Acta Histochem Cytochem 30(3):309–314. https://doi.org/10.1267/ahc.30.309

    Article  Google Scholar 

  32. Barns KJ, Weisshaar JC (2013) Real-time attack of LL-37 on single Bacillus subtilis cells. Biochimica Et Biophysica Acta Biomembr 1828(6):1511–1520. https://doi.org/10.1016/j.bbamem.2013.02.011

    Article  CAS  Google Scholar 

  33. Sochacki KA, Barns KJ, Bucki R, Weisshaar JC (2011) Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci USA 108(16):E77–E81. https://doi.org/10.1073/pnas.1101130108

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee H, Ji YR, Ryoo ZY, Choi MS, Woo ER, Lee DG (2016) Antibacterial Mechanism of (-)-Nortrachelogenin in Escherichia coli O157. Curr Microbiol 72(1):48–54. https://doi.org/10.1007/s00284-015-0918-3

    Article  CAS  PubMed  Google Scholar 

  35. Sani MA, Henriques ST, Weber D, Separovic F (2015) Bacteria may cope differently from similar membrane damage caused by the Australian tree frog antimicrobial peptide maculatin 1.1. J Biol Chem. 290(32):19853–19862. https://doi.org/10.1074/jbc.m115.643262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinert S, Lee E, Tresset G, Zhang DW, Hortsch R, Wetzel R, Hebbar S, Sundram JR, Kesavapany S, Boschke E, Kraut R (2008) A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways. PLoS ONE. https://doi.org/10.1371/journal.pone.0002933

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wenzel C, Christian S, Algire C, Schwede W, Neuhaus R, Guenther J, Liu NS, Raese S, Parczyk K, Prechtl S, Steigemann P (2015) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Cancer Res. https://doi.org/10.1158/1538-7445.am2015-317

    Article  Google Scholar 

  38. Chang CWT, Fosso M, Kawasaki Y, Shrestha S, Bensaci MF, Wang JH, Evans CK, Takemoto JY (2010) Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides. J Antibiot. 63(11):667–672

    Article  CAS  Google Scholar 

  39. Li L, Zhang C, Xu D, Schlappi M, Xu ZQ (2012) Expression of recombinant EARLI1, a hybrid proline-rich protein of Arabidopsis, in Escherichia coli and its inhibition effect to the growth of fungal pathogens and Saccharomyces cerevisiae. Gene 506(1):50–61. https://doi.org/10.1016/j.gene.2012.06.070

    Article  CAS  PubMed  Google Scholar 

  40. Shrestha S, Grilley M, Fosso MY, Chang CWT, Takemoto JY (2013) Membrane lipid-modulated mechanism of action and non-cytotoxicity of novel fungicide aminoglycoside FG08. PLoS ONE 8(9):1. https://doi.org/10.1371/journal.pone.0073843

    Article  CAS  Google Scholar 

  41. Kamilla S, Jain V (2017) Robust high throughput real-time monitoring assay for the specific screening of bacterial cell envelope inhibitors. Proc Indian Natl Sci Acad. 83(1):211–215. https://doi.org/10.16943/ptinsa/2016/48859

    Article  Google Scholar 

  42. Lebaron P, Catala P, Parthuisot N (1998) Effectiveness of SYTOX green stain for bacterial viability assessment. Appl Environ Microbiol 64(7):2697–2700

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for Enterobacteria. J Bacteriol 119(3):736–747

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Royce LA, Boggess E, Fu Y, Liu P, Shanks JV, Dickerson J, Jarboe LR (2014) Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage. PLoS ONE 9(2):1. https://doi.org/10.1371/journal.pone.0089580

    Article  CAS  Google Scholar 

  46. Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR (2015) Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng 29:180–188. https://doi.org/10.1016/j.ymben.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  47. Bremer HD, Dennis PP (2008) Modulation of chemical composition and other parameters of the cell at different exponential growth rates. In: Slauch JM (ed) Ecosal Plus. ASM Press, New York

    Google Scholar 

  48. Volkmer B, Heinemann M (2011) Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 6(7):1. https://doi.org/10.1371/journal.pone.0023126

    Article  CAS  Google Scholar 

  49. Singer VL, Lawlor TE, Yue S (1999) Comparison of SYBR (R) Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat Res Genet Toxicol Environ Mutagen 439(1):37–47. https://doi.org/10.1016/s1383-5718(98)00172-7

    Article  CAS  Google Scholar 

  50. Akerlund T, Nordstrom K, Bernander R (1995) Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 177(23):6791–6797. https://doi.org/10.1128/jb.177.23.6791-6797.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–701. https://doi.org/10.1128/jb.06112-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loren N, Hagman J, Jonasson JK, Deschout H, Bernin D, Cella-Zanacchi F, Diaspro A, McNally JG, Ameloot M, Smisdom N, Nyden M, Hermansson AM, Rudemo M, Braeckmans K (2015) Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 48(3):323–387. https://doi.org/10.1017/s0033583515000013

    Article  CAS  PubMed  Google Scholar 

  53. Jarboe LR, Royce LA, Liu P (2013) Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00272

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen YY, Gaenzle MG (2016) Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. Int J Food Microbiol 222:16–22. https://doi.org/10.1016/j.ijfoodmicro.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  55. Shabala L, Ross T (2008) Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H + and enhanced ability to extrude H+. Res Microbiol 159(6):458–461. https://doi.org/10.1016/j.resmic.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  56. Kanno M, Katayama T, Tamaki H, Mitani Y, Meng X-Y, Hori T, Narihiro T, Morita N, Hoshino T, Yumoto I, Kimura N, Hanada S, Kamagata Y (2013) Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance. Appl Environ Microbiol 79(22):6998–7005. https://doi.org/10.1128/aem.02900-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen YX, Reinhardt M, Neris N, Kerns L, Mansell TJ, Jarboe LR (2018) Lessons in membrane engineering for octanoic acid production from environmental Escherichia coli isolates. Appl Environ Microbiol. https://doi.org/10.1128/aem.01285-18

    Article  PubMed  PubMed Central  Google Scholar 

  58. Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sa-Correia I (2012) Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microbial Cell Factor 11:1. https://doi.org/10.1186/1475-2859-11-98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Agriculture National Institute of Food and Agriculture, Award Number 2017-67021-26137. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank the ISU Flow Cytometry Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura R. Jarboe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santoscoy, M.C., Jarboe, L.R. Streamlined assessment of membrane permeability and its application to membrane engineering of Escherichia coli for octanoic acid tolerance. J Ind Microbiol Biotechnol 46, 843–853 (2019). https://doi.org/10.1007/s10295-019-02158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02158-6

Keywords

Navigation