Skip to main content
Log in

Dynamic kinetic resolution of Vince lactam catalyzed by γ-lactamases: a mini-review

  • Biocatalysis - Mini-Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

γ-Lactamases are versatile enzymes used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir. Owing to the broad applications in the healthcare industry, the resolution process of Vince lactam has witnessed tremendous progress during the past decades. Some of the most important advances are the enzymatic strategies involving γ-lactamases. The strong industrial demand drives the progress in various strategies for discovering novel biocatalysts. In the past few years, several new scientific breakthroughs, including the genome-mining strategy and elucidation of several crystal structures, boosted the research on γ-lactamases. So far, several families of γ-lactamases for resolution of Vince lactam have been discovered, and their number is continuously increasing. The purpose of this mini-review is to describe the discovery strategy and classification of these intriguing enzymes and to cover our current knowledge on their potential biological functions. Moreover, structural properties are described in addition to their possible catalytic mechanisms. Additionally, recent advances in the newest approaches, such as immobilization to increase stability, and other engineering efforts are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boutureira O, Matheu MI, Diaz Y, Castillon S (2013) Advances in the enantioselective synthesis of carbocyclic nucleosides. Chem Soc Rev 42:5056–5072. https://doi.org/10.1039/c3cs00003f

    Article  CAS  PubMed  Google Scholar 

  2. Jeong LS, Lee JA (2004) Recent advances in the synthesis of the carbocyclic nucleosides as potential antiviral agents. Antiviral Chem Chemother 15:235–250

    Article  CAS  Google Scholar 

  3. Marquez VE, Lim M-I (1986) Carbocyclic nucleosides. Med Res Rev 6:1–40. https://doi.org/10.1002/med.2610060102

    Article  CAS  PubMed  Google Scholar 

  4. Schneller SW (2002) Carbocyclic nucleosides (carbanucleosides) as new therapeutic leads. Curr Top Med Chem 2:1087–1092

    Article  CAS  Google Scholar 

  5. Rodriguez JB, Comin MJ (2003) New progresses in the enantioselective synthesis and biological properties of carbocyclic nucleosides. Mini Rev Med Chem 3:95–114

    Article  CAS  Google Scholar 

  6. Singh R, Vince R (2012) 2-Azabicyclo[2.2.1]hept-5-en-3-one: chemical profile of a versatile synthetic building block and its impact on the development of therapeutics. Chem Rev 112:4642–4686. https://doi.org/10.1021/cr2004822

    Article  CAS  PubMed  Google Scholar 

  7. Kusaka T, Yamamoto H, Shibata M, Muroi M, Kishi T (1968) Streptomyces citricolor nov. sp. and a new antibiotic, aristeromycin. J Antibiot 21:255–263

    Article  CAS  Google Scholar 

  8. Yaginuma S, Muto N, Tsujino M, Sudate Y, Hayashi M, Otani M (1981) Studies on neplanocin A, new antitumor antibiotic. I. Producing organism, isolation and characterization. J Antibiot 34:359–366

    Article  CAS  Google Scholar 

  9. Hervey PS, Perry CM (2000) Abacavir. Drugs 60:447–479. https://doi.org/10.2165/00003495-200060020-00015

    Article  CAS  PubMed  Google Scholar 

  10. Gupta RK, Hill A, Sawyer AW, Cozzi-Lepri A, von Wyl V, Yerly S, Lima VD, Gunthard HF, Gilks C, Pillay D (2009) Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a systematic review and meta-analysis. Lancet Infect Dis 9:409–417. https://doi.org/10.1016/S1473-3099(09)70136-7

    Article  CAS  PubMed  Google Scholar 

  11. Bessieres M, Chevrier F, Roy V, Agrofoglio LA (2015) Recent progress for the synthesis of selected carbocyclic nucleosides. Future Med Chem 7:1809–1828. https://doi.org/10.4155/fmc.15.105

    Article  CAS  PubMed  Google Scholar 

  12. Zhu XF (2000) The latest progress in the synthesis of carbocyclic nucleosides. Nucleosides Nucleotides Nucleic Acids 19:651–690. https://doi.org/10.1080/15257770008035015

    Article  CAS  PubMed  Google Scholar 

  13. Agrofoglio LA, Gillaizeau I, Saito Y (2003) Palladium-assisted routes to nucleosides. Chem Rev 103:1875–1916. https://doi.org/10.1021/cr010374q

    Article  CAS  PubMed  Google Scholar 

  14. Boncel S, Gondela A, Walczak K (2010) Michael-type addition as a convenient method for regioselective N-alkylation of ambident uracils. Synthesis 2010:1573–1589

    Article  Google Scholar 

  15. Jagt J, Van Leusen A (1974) Diels-Alder cycloadditions of sulfonyl cyanides with cyclopentadiene. Synthesis of 2-azabicyclo [2.2. 1] hepta-2, 5-dienes. J Org Chem 39:564–566

    Article  CAS  Google Scholar 

  16. Kamlet AS, Préville C, Farley KA, Piotrowski DW (2013) Regioselective hydroarylations and parallel kinetic resolution of Vince lactam. Angew Chem Int Ed 52:10607–10610. https://doi.org/10.1002/anie.201304818

    Article  CAS  Google Scholar 

  17. Walczak P, Pannek J, Boratynski F, Janik-Polanowicz A, Olejniczak T (2014) Synthesis and fungistatic activity of bicyclic lactones and lactams against Botrytis cinerea, Penicillium citrinum, and Aspergillus glaucus. J Argic Food Chem 62:8571–8578. https://doi.org/10.1021/jf502148h

    Article  CAS  Google Scholar 

  18. Jia F, Hong J, Sun P-H, Chen J-X, Chen W-M (2013) Facile synthesis of the neuraminidase inhibitor peramivir. Synth Comm 43:2641–2647

    Article  CAS  Google Scholar 

  19. Mulakayala N, Reddy ChU, Iqbal J, Pal M (2010) Synthesis of dipeptidyl peptidase-4 inhibitors: a brief overview. Tetrahedron 66:4919–4938. https://doi.org/10.1016/j.tet.2010.04.088

    Article  CAS  Google Scholar 

  20. Wisniewski T, Bayne E, Flanagan J, Shao Q, Wnek R, Matheravidathu S, Fischer P, Forrest MJ, Peterson L, Song X, Yang L, Demartino JA, Struthers M (2010) Assessment of chemokine receptor function on monocytes in whole blood: in vitro and ex vivo evaluations of a CCR2 antagonist. J Immunol Methods 352:101–110. https://doi.org/10.1016/j.jim.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  21. Sun H, Zhang H, Ang EL, Zhao H (2018) Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg Med Chem 26:1275–1284. https://doi.org/10.1016/j.bmc.2017.06.043

    Article  CAS  PubMed  Google Scholar 

  22. Caner H, Groner E, Levy L, Agranat I (2004) Trends in the development of chiral drugs. Drug Discov Today 9:105–110. https://doi.org/10.1016/S1359-6446(03)02904-0

    Article  CAS  PubMed  Google Scholar 

  23. Taylor SJ, Brown RC, Keene PA, Taylor IN (1999) Novel screening methods–the key to cloning commercially successful biocatalysts. Bioorg Med Chem 7:2163–2168

    Article  CAS  Google Scholar 

  24. Patel RN (2000) Microbial/enzymatic synthesis of chiral drug intermediates. Adv Appl Microbiol 47:33–78

    Article  CAS  Google Scholar 

  25. Littlechild JA (2011) Thermophilic archaeal enzymes and applications in biocatalysis. Biochem Soc Trans 39:155–158. https://doi.org/10.1042/BST0390155

    Article  CAS  PubMed  Google Scholar 

  26. Littlechild JA (2015) Enzymes from extreme environments and their industrial applications. Front Bioeng Biotechnol 3:161. https://doi.org/10.3389/fbioe.2015.00161

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Zheng G, Wu S (2010) Advances in lactamases from microbes—a review. Wei Sheng Wu Xue Bao 50:988–994

    CAS  PubMed  Google Scholar 

  28. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268. https://doi.org/10.1038/35051736

    Article  CAS  PubMed  Google Scholar 

  29. Littlechild JA (2015) Archaeal enzymes and applications in industrial biocatalysts. Archaea 2015:147671. https://doi.org/10.1155/2015/147671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136. https://doi.org/10.1016/S1367-5931(00)00181-2

    Article  CAS  PubMed  Google Scholar 

  31. Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) Chemoenzymatic synthesis of (−)-carbovir utilizing a whole cell catalysed resolution of 2-azabicyclo[2.2.1]hept-5-en-3-one. J Chem Soc Chem Comm. https://doi.org/10.1039/c39900001120

    Article  Google Scholar 

  32. Taylor SJC, McCague R, Wisdom R, Lee C, Dickson K, Ruecroft G, O’Brien F, Littlechild J, Bevan J, Roberts SM, Evans CT (1993) Development of the biocatalytic resolution of 2-azabicyclo[2.2.1]hept-5-en-3-one as an entry to single-enantiomer carbocyclic nucleosides. Tetrahedron Asymmetry 4:1117–1128. https://doi.org/10.1016/S0957-4166(00)80218-9

    Article  CAS  Google Scholar 

  33. Zhu S, Gong C, Song D, Gao S, Zheng G (2012) Discovery of a novel (+)-gamma-lactamase from Bradyrhizobium japonicum USDA 6 by rational genome mining. Appl Environ Microbiol 78:7492–7495. https://doi.org/10.1128/AEM.01398-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Zhu Y, Zhao G, Zhu J, Wu S (2015) Characterization of a recombinant (+)-gamma-lactamase from Microbacterium hydrocarbon oxydans which provides evidence that two enantiocomplementary gamma-lactamases are in the strain. Appl Microbiol Biotechnol 99:3069–3080. https://doi.org/10.1007/s00253-014-6114-8

    Article  CAS  PubMed  Google Scholar 

  35. Gao S, Huang R, Zhu S, Li H, Zheng G (2016) Identification and characterization of a novel (+)-gamma-lactamase from Microbacterium hydrocarbonoxydans. Appl Microbiol Biotechnol 100:9543–9553. https://doi.org/10.1007/s00253-016-7643-0

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Guo X, Zheng G, Wen C (2009) Purification and characterization of a novel (−) gamma-lactamase from Microbacterium hydrocarbonoxydans. Ann Microbiol 59:345. https://doi.org/10.1007/bf03178337

    Article  CAS  Google Scholar 

  37. Yang M, Gao Q, Wu S, Wang J, Zheng G (2012) Characterization of a recombinant (−)gamma-lactamase from Microbacterium hydrocarbonoxydans. Biotechnol Lett 34:275–279. https://doi.org/10.1007/s10529-011-0758-6

    Article  CAS  PubMed  Google Scholar 

  38. Line K, Isupov MN, Littlechild JA (2004) The crystal structure of a (−) gamma-lactamase from an Aureobacterium species reveals a tetrahedral intermediate in the active site. J Mol Biol 338:519–532. https://doi.org/10.1016/j.jmb.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  39. Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167. https://doi.org/10.1038/nbt1519

    Article  CAS  PubMed  Google Scholar 

  40. Scotto d’Abusco A, Ammendola S, Scandurra R, Politi L (2001) Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:183–192

    Article  Google Scholar 

  41. Toogood HS, Brown RC, Line K, Keene PA, Taylor SJC, McCague R, Littlechild JA (2004) The use of a thermostable signature amidase in the resolution of the bicyclic synthon (rac)-γ-lactam. Tetrahedron 60:711–716. https://doi.org/10.1016/j.tet.2003.11.064

    Article  CAS  Google Scholar 

  42. Torres LL, Schliessmann A, Schmidt M, Silva-Martin N, Hermoso JA, Berenguer J, Bornscheuer UT, Hidalgo A (2012) Promiscuous enantioselective (−)-gamma-lactamase activity in the Pseudomonas fluorescens esterase I. Org Biomol Chem 10:3388–3392. https://doi.org/10.1039/c2ob06887g

    Article  CAS  PubMed  Google Scholar 

  43. Assaf Z, Eger E, Vitnik Z, Fabian WMF, Ribitsch D, Guebitz GM, Faber K, Hall M (2014) Identification and application of enantiocomplementary lactamases for vince lactam derivatives. ChemCatChem 6:2517–2521. https://doi.org/10.1002/cctc.201402077

    Article  CAS  Google Scholar 

  44. Zhu S, Ren L, Yu S, Gong C, Song D, Zheng G (2014) Enzymatic preparation of optically pure (+)-2-azabicyclo[2.2.1]hept-5-en-3-one by (-)-gamma-lactamase from Bradyrhizobium japonicum USDA 6. Bioorg Med Chem Lett 24:4899–4902. https://doi.org/10.1016/j.bmcl.2014.08.057

    Article  CAS  PubMed  Google Scholar 

  45. Gao S, Zhu S, Huang R, Lu Y, Zheng G (2015) Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-gamma-lactamase as a catalyst. Bioorg Med Chem Lett 25:3878–3881. https://doi.org/10.1016/j.bmcl.2015.07.054

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Zhu J, Wu S (2015) Immobilization on macroporous resin makes E. coli RutB a robust catalyst for production of (−) Vince lactam. Appl Microbiol Biotechnol 99:4691–4700. https://doi.org/10.1007/s00253-014-6247-9

    Article  CAS  PubMed  Google Scholar 

  47. Xue TY, Xu GC, Han RZ, Ni Y (2015) Soluble expression of (+)-gamma-lactamase in Bacillus subtilis for the enantioselective preparation of abacavir precursor. Appl Biochem Biotechnol 176:1687–1699. https://doi.org/10.1007/s12010-015-1670-7

    Article  CAS  PubMed  Google Scholar 

  48. Ren L, Zhu S, Shi Y, Gao S, Zheng G (2015) Enantioselective resolution of gamma-lactam by a novel thermostable type II (+)-gamma-lactamase from the hyperthermophilic archaeon Aeropyrum pernix. Appl Biochem Biotechnol 176:170–184. https://doi.org/10.1007/s12010-015-1565-7

    Article  CAS  PubMed  Google Scholar 

  49. Zhu S, Huang R, Gao S, Li X, Zheng G (2016) Discovery and characterization of a second extremely thermostable (+)-gamma-lactamase from Sulfolobus solfataricus P2. J Biosci Bioeng 121:484–490. https://doi.org/10.1016/j.jbiosc.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  50. Yin J-G, Gong Y, Zhang X-Y, Zheng G-W, Xu J-H (2016) Green access to chiral vince lactam in a buffer-free aqueous system using a newly identified substrate-tolerant (−)-[gamma]-lactamase. Catal Sci Technol 6:6305–6310. https://doi.org/10.1039/C6CY00786D

    Article  CAS  Google Scholar 

  51. Assaf Z, Faber K, Hall M (2016) Scope, limitations and classification of lactamases. J Biotechnol 235:11–23. https://doi.org/10.1016/j.jbiotec.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  52. Brabban AD, Littlechild J, Wisdom R (1996) Stereospecific γ-lactamase activity in a Pseudomonas fluorescens species. J Ind Microbiol 16:8–14. https://doi.org/10.1007/bf01569915

    Article  CAS  Google Scholar 

  53. Bernhardt P, Hult K, Kazlauskas RJ (2005) Molecular basis of perhydrolase activity in serine hydrolases. Angew Chem Int Ed 44:2742–2746. https://doi.org/10.1002/anie.200463006

    Article  CAS  Google Scholar 

  54. Sun Y, Zhao H, Wang J, Zhu J, Wu S (2015) Identification and regulation of the catalytic promiscuity of (−)-gamma-lactamase from Microbacterium hydrocarbonoxydans. Appl Microbiol Biotechnol 99:7559–7568. https://doi.org/10.1007/s00253-015-6503-7

    Article  CAS  PubMed  Google Scholar 

  55. Yin DL, Bernhardt P, Morley KL, Jiang Y, Cheeseman JD, Purpero V, Schrag JD, Kazlauskas RJ (2010) Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase. Biochemistry 49:1931–1942. https://doi.org/10.1021/bi9021268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan X, Wang J, Sun Y, Zhu J, Wu S (2016) Facilitating the evolution of esterase activity from a promiscuous enzyme (Mhg) with catalytic functions of amide hydrolysis and carboxylic acid perhydrolysis by engineering the Substrate entrance tunnel. Appl Environ Microbiol 82:6748–6756. https://doi.org/10.1128/AEM.01817-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M (2010) Structure and characterization of amidase from Rhodococcus sp. N-771: insight into the molecular mechanism of substrate recognition. BBA Proteins Proteom 1804:184–192. https://doi.org/10.1016/j.bbapap.2009.10.001

    Article  CAS  Google Scholar 

  58. Mayaux JF, Cerbelaud E, Soubrier F, Yeh P, Blanche F, Petre D (1991) Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol 173:6694–6704

    Article  CAS  Google Scholar 

  59. Li H, Zhu S, Zheng G (2018) Promiscuous (+)-gamma-lactamase activity of an amidase from nitrile hydratase pathway for efficient synthesis of carbocyclic nucleosides intermediate. Bioorg Med Chem Lett 28:1071–1076. https://doi.org/10.1016/j.bmcl.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  60. Parsons JF, Calabrese K, Eisenstein E, Ladner JE (2003) Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42:5684–5693. https://doi.org/10.1021/bi027385d

    Article  CAS  PubMed  Google Scholar 

  61. Fukuta Y, Koizumi S, Komeda H, Asano Y (2010) A new aryl acylamidase from Rhodococcus sp. strain Oct1 acting on ω-lactams: its characterization and gene expression in Escherichia coli. Enzyme Microb Technol 46:237–245. https://doi.org/10.1016/j.enzmictec.2009.09.010

    Article  CAS  Google Scholar 

  62. Erna X, Jiaxin W, Hong Z, Ge C, Hong Y, Jimin Z, Lei W, Zhi W (2013) Resolution of N-hydroxymethyl vince lactam catalyzed by lipase in organic solvent. J Chem Technol Biotechnol 88:904–909. https://doi.org/10.1002/jctb.3919

    Article  CAS  Google Scholar 

  63. Forró E, Fülöp F (2008) Enzymatic method for the synthesis of blockbuster drug intermediates—synthesis of five-membered cyclic γ-amino acid and γ-lactam enantiomers. Eur J Org Chem 2008:5263–5268. https://doi.org/10.1002/ejoc.200800723

    Article  CAS  Google Scholar 

  64. Li F, Zhao D, Chen G, Zhang H, Yue H, Wang L, Wang Z (2013) Enantioselective transesterification of N-hydroxymethyl vince lactam catalyzed by lipase under ultrasound irradiation. Biocatal Biotransform 31:299–304. https://doi.org/10.3109/10242422.2013.857314

    Article  CAS  Google Scholar 

  65. Nakano H, Iwasa K, Okuyama Y, Hongo H (1996) Lipase-catalyzed resolution of 2-azabicyclo[2.2.1]hept-5-en-3-ones. Tetrahedron Asymmetry 7:2381–2386. https://doi.org/10.1016/0957-4166(96)00293-5

    Article  CAS  Google Scholar 

  66. Zhu L, Zhu F, Qin S, Wu B, He B (2016) Highly efficient resolution of N-hydroxymethyl vince lactam by solvent stable lipase YCJ01. J Mol Catal B Enzym 133:S150–S156. https://doi.org/10.1016/j.molcatb.2016.12.009

    Article  CAS  Google Scholar 

  67. Connelly S, Line K, Isupov MN, Littlechild JA (2005) Synthesis and characterisation of a ligand that forms a stable tetrahedral intermediate in the active site of the Aureobacterium species (−) gamma-lactamase. Org Biomol Chem 3:3260–3262. https://doi.org/10.1039/b511078e

    Article  CAS  PubMed  Google Scholar 

  68. Gao S, Zhou Y, Zhang W, Wang W, Yu Y, Mu Y, Wang H, Gong X, Zheng G, Feng Y (2017) Structural insights into the gamma-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans. Sci Rep 7:44542. https://doi.org/10.1038/srep44542

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gonsalvez IS, Isupov MN, Littlechild JA (2001) Crystallization and preliminary X-ray analysis of a gamma-lactamase. Acta Crystallogr D 57:284–286

    Article  CAS  Google Scholar 

  70. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  71. Hickey AM, Ngamsom B, Wiles C, Greenway GM, Watts P, Littlechild JA (2009) A microreactor for the study of biotransformations by a cross-linked gamma-lactamase enzyme. Biotechnol J 4:510–516. https://doi.org/10.1002/biot.200800302

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Zhang X, Min C, Wu S, Zheng G (2011) Single-step purification and immobilization of γ-lactamase and on-column transformation of 2-azabicyclo [2.2.1] hept-5-en-3-one. Process Biochem 46:81–87. https://doi.org/10.1016/j.procbio.2010.07.018

    Article  CAS  Google Scholar 

  73. Wang J, Zhu J, Min C, Wu S (2014) CBD binding domain fused gamma-lactamase from Sulfolobus solfataricus is an efficient catalyst for (−) gamma-lactam production. BMC Biotechnol 14:40. https://doi.org/10.1186/1472-6750-14-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang J, Zhao G, Zhang Z, Liang Q, Min C, Wu S (2014) Autodisplay of an archaeal gamma-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (−) vince lactam. Appl Microbiol Biotechnol 98:6991–7001. https://doi.org/10.1007/s00253-014-5704-9

    Article  CAS  PubMed  Google Scholar 

  75. Li W, Wen H, Shi Q, Zheng G (2016) Study on immobilization of (+) γ-lactamase using a new type of epoxy graphene oxide carrier. Process Biochem 51:270–276. https://doi.org/10.1016/j.procbio.2015.11.030

    Article  CAS  Google Scholar 

  76. Li H, Zheng G, Zhu S (2018) Construction of an organelle-like nanodevice via supramolecular self-assembly for robust biocatalysts. Microb Cell Fact 17:26. https://doi.org/10.1186/s12934-018-0873-3

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194. https://doi.org/10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  78. Davids T, Schmidt M, Bottcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17:215–220. https://doi.org/10.1016/j.cbpa.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  79. Gao S, Zhu S, Huang R, Li H, Wang H, Zheng G (2018) Engineering the enantioselectivity and thermostability of a (+)-gamma-lactamase from Microbacterium hydrocarbonoxydans for kinetic resolution of vince lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one). Appl Environ Microbiol. https://doi.org/10.1128/aem.01780-17

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235. https://doi.org/10.1039/C3CS60075K

    Article  CAS  PubMed  Google Scholar 

  81. Kettle AJ, Carere J, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM (2015) A gamma-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genet Biol 83:1–9. https://doi.org/10.1016/j.fgb.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Cheng D, Wang J, Jin L (2016) Isolation of Pseudomonas granadensis B6 with (+)-γ-lactamase and whole cell resolution of racemic γ-lactam. J Mol Catal B Enzym 133:S114–S118. https://doi.org/10.1016/j.molcatb.2016.12.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 21706005), China Postdoctoral Science Foundation (Grant No. 2017M610747), the Fundamental Research Funds for the Central Universities (No. XK1802-8), and National Great Science and Technology Projects (2018ZX09721001).

Author information

Authors and Affiliations

Authors

Contributions

SZ and GZ wrote the paper.

Corresponding author

Correspondence to Guojun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest associated with the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zheng, G. Dynamic kinetic resolution of Vince lactam catalyzed by γ-lactamases: a mini-review. J Ind Microbiol Biotechnol 45, 1017–1031 (2018). https://doi.org/10.1007/s10295-018-2093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2093-6

Keywords

Navigation