Skip to main content
Log in

Enantioselective Resolution of γ-Lactam by a Novel Thermostable Type II (+)-γ-Lactamase from the Hyperthermophilic Archaeon Aeropyrum pernix

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable formamidase from the aerobic hyperthermophilic archaeon Aeropyrum pernix was revealed a novel type II (+)-γ-lactamase. This type II (+)-γ-lactamase is only composed of 377 amino acid residues, in contrast to another thermostable (+)-γ-lactamase from Sulfolobus solfataricus with 504 amino acid residues (type I). It is interesting that there are low identities between these two (+)-γ-lactamases, and herein, we further proved that at least two types of (+)-γ-lactamases exist in nature due to enzyme promiscuity. The gene of this thermostable (+)-γ-lactamase was cloned, functionally expressed in Escherichia coli BL21, and purified by a simple yet effective heat treatment method. It showed incredible thermostability, retaining 100 % of its activity after 12 h at 100 °C. The optimum temperature for this enzyme was supposed to be more than 100 °C, and the optimum pH for this enzyme was about 9.0. The lactamase maintained its activity in the presence of most metal ions, except for Cu2+. This thermo- and alkaline-tolerant (+)-γ-lactamase presents promising properties for the industrial application. Specifically, it could be used for the production of chirally pure (−)-γ-lactam for the synthesis of well-known carbocyclic nucleosides like abacavir and peramivir. The optical purity of the chiral product reached over 97 % enantiomeric excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  2. Cilia, E., Fabbri, A., Uriani, M., Scialdone, G. G., & Ammendola, S. (2005). FEBS Journal, 272, 4716–4724.

    Article  CAS  Google Scholar 

  3. Connelly, S., Line, K., Isupov, M. N., & Littlechild, J. A. (2005). Organic & Biomolecular Chemistry, 3, 3260–3262.

    Article  CAS  Google Scholar 

  4. d’Abusco, A., Ammendola, S., Scandurra, R., & Politi, L. (2001). Extremophiles, 5, 183–192.

    Article  Google Scholar 

  5. Demirjian, D. C., Morı́s-Varas, F., & Cassidy, C. S. (2001). Current Opinion in Chemical Biology, 5, 144–151.

    Article  CAS  Google Scholar 

  6. Egorova, K., & Antranikian, G. (2005). Current Opinion in Microbiology, 8, 649–655.

    Article  CAS  Google Scholar 

  7. Gao, R., Feng, Y., Ishikawa, K., Ishida, H., Ando, S., Kosugi, Y., & Cao, S. (2003). Journal of Molecular Catalysis B: Enzymatic, 24–25, 1–8.

    Article  Google Scholar 

  8. Hickey, A. M., Ngamsom, B., Wiles, C., Greenway, G. M., Watts, P., & Littlechild, J. A. (2009). Biotechnology Journal, 4, 510–516.

    Article  CAS  Google Scholar 

  9. Hirakawa, H., Kamiya, N., Kawarabayashi, Y., & Nagamune, T. (2004). Journal of Bioscience and Bioengineering, 97, 202–206.

    Article  CAS  Google Scholar 

  10. Ohtaki, A., Murata, K., Sato, Y., Noguchi, K., Miyatake, H., Dohmae, N., Yamada, K., Yohda, M., & Odaka, M. (2010). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804, 184–192.

    Article  CAS  Google Scholar 

  11. Patel, R. N. (2008). Coordination Chemistry Reviews, 252, 659–701.

    Article  CAS  Google Scholar 

  12. Qin, X., Wang, J., & Zheng, G. (2010). Applied Biochemistry and Biotechnology, 162, 2345–2354.

    Article  CAS  Google Scholar 

  13. Rasor, J. P., & Voss, E. (2001). Applied Catalysis A: General, 221, 145–158.

    Article  CAS  Google Scholar 

  14. Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T., & Maruyama, T. (1996). International Journal of Systematic Bacteriology, 46, 1070–1077.

    Article  CAS  Google Scholar 

  15. Staszewski S, K. P. M. J. & et al. (2001). JAMA: The Journal of the American Medical Association, 285, 1155–1163.

  16. Taylor, S. J. C., Brown, R. C., Keene, P. A., & Taylor, I. N. (1999). Bioorganic & Medicinal Chemistry, 7, 2163–2168.

    Article  CAS  Google Scholar 

  17. Taylor, S. J. C., McCague, R., Wisdom, R., Lee, C., Dickson, K., Ruecroft, G., O’Brien, F., Littlechild, J., Bevan, J., Roberts, S. M., & Evans, C. T. (1993). Tetrahedron: Asymmetry, 4, 1117–1128.

    Article  CAS  Google Scholar 

  18. Toogood, H., Hollingsworth, E., Brown, R., Taylor, I., Taylor, S., McCague, R., & Littlechild, J. (2002). Extremophiles, 6, 111–122.

    Article  CAS  Google Scholar 

  19. Toogood, H. S., Brown, R. C., Line, K., Keene, P. A., Taylor, S. J. C., McCague, R., & Littlechild, J. A. (2004). Tetrahedron, 60, 711–716.

    Article  CAS  Google Scholar 

  20. Toogood, H. S., Taylor, I. N., Brown, R. C., Taylor, S. J. C., McCague, R., & Littlechild, J. A. (2002). Biocatalysis and Biotransformation, 20, 241–249.

    Article  CAS  Google Scholar 

  21. Torres, L. L., Schlie, Schmidt, M., Silva-Martin, N., Hermoso, J. A., Berenguer, J., Bornscheuer, U. T. & Hidalgo, A. (2012). Organic & Biomolecular Chemistry, 10, 3388–3392.

  22. Wang, J., Zhang, X., Min, C., Wu, S., & Zheng, G. (2011). Process Biochemistry, 46, 81–87.

    Article  Google Scholar 

  23. Willies, S., Isupov, M., & Littlechild, J. (2010). Environmental Technology, 31, 1159–1167.

    Article  CAS  Google Scholar 

  24. Yu, Y., Garg, S., Yu, P. A., Kim, H.-J., Patel, A., Merlin, T., Redd, S., & Uyeki, T. M. (2012). Clinical Infectious Diseases, 55, 8–15.

    Article  CAS  Google Scholar 

  25. Zhu, S., Gong, C., Ren, L., Li, X., Song, D., & Zheng, G. (2013). Applied Microbiology and Biotechnology, 97, 837–845.

    Article  CAS  Google Scholar 

  26. Zhu, S., Gong, C., Song, D., Gao, S., & Zheng, G. (2012). Applied and Environmental Microbiology, 78, 7492–7495.

    Article  CAS  Google Scholar 

  27. Zhu, S., Song, D., Gong, C., Tang, P., Li, X., Wang, J., & Zheng, G. (2013). Applied Microbiology and Biotechnology, 97, 6769–6778.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Zheng.

Additional information

Lu Ren and Shaozhou Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Zhu, S., Shi, Y. et al. Enantioselective Resolution of γ-Lactam by a Novel Thermostable Type II (+)-γ-Lactamase from the Hyperthermophilic Archaeon Aeropyrum pernix . Appl Biochem Biotechnol 176, 170–184 (2015). https://doi.org/10.1007/s12010-015-1565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1565-7

Keywords

Navigation