Skip to main content
Log in

Synthetic biology advances and applications in the biotechnology industry: a perspective

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Synthetic biology is a logical extension of what has been called recombinant DNA (rDNA) technology or genetic engineering since the 1970s. As rDNA technology has been the driver for the development of a thriving biotechnology industry today, starting with the commercialization of biosynthetic human insulin in the early 1980s, synthetic biology has the potential to take the industry to new heights in the coming years. Synthetic biology advances have been driven by dramatic cost reductions in DNA sequencing and DNA synthesis; by the development of sophisticated tools for genome editing, such as CRISPR/Cas9; and by advances in informatics, computational tools, and infrastructure to facilitate and scale analysis and design. Synthetic biology approaches have already been applied to the metabolic engineering of microorganisms for the production of industrially important chemicals and for the engineering of human cells to treat medical disorders. It also shows great promise to accelerate the discovery and development of novel secondary metabolites from microorganisms through traditional, engineered, and combinatorial biosynthesis. We anticipate that synthetic biology will continue to have broadening impacts on the biotechnology industry to address ongoing issues of human health, world food supply, renewable energy, and industrial chemicals and enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoniou MN, Skipper KA, Anakok O (2013) Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 24:363–374

    Article  PubMed  CAS  Google Scholar 

  2. Antonovsky N, Gleizer S, Noor E et al (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166:115125

    Article  CAS  Google Scholar 

  3. Au LC, Yang FY, Yang WJ, Lo SH, Kao CE (1998) Gene synthesis by an LCR-based approach: high-level production of leptin-154 using synthetic gene in Escherichia coli. Biochem Biophys Res Commun 24:200–203

    Article  Google Scholar 

  4. Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184

    Article  PubMed  CAS  Google Scholar 

  5. Bak RO, Porteus MH (2017) CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep 20:750–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772

    Article  PubMed  CAS  Google Scholar 

  7. Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672

    Article  PubMed  CAS  Google Scholar 

  8. Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–759

    Article  PubMed  CAS  Google Scholar 

  9. Baltz RH (2015) The life and times of an industrial microbial geneticist: engineering actinomycetes and other subjects. SIMB News 65:100–112

    Google Scholar 

  10. Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 43:343–370

    Article  PubMed  CAS  Google Scholar 

  11. Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44:573–575

    Article  PubMed  CAS  Google Scholar 

  12. Baltz RH (2017) Molecular beacons to identify gifted microbes for genome mining. J Antibiot 70:639–646

    Article  PubMed  CAS  Google Scholar 

  13. Baltz RH (2017) Microbial genome mining for natural product drug discovery. In: Newman D, Cragg G, Grothaus P (eds) Chemical biology of natural products. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  14. Baltz RH (2018) Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS derived antibiotics: a perspective. J Ind Mirobiol Biotechnol. https://doi.org/10.1007/s10295-017-1999-8

    Article  Google Scholar 

  15. Banyai W, Peck BJ, Fernandez A, Chen S, Indermuhle P (2015) De novo synthesized gene libraries. US Patent Application no. 2015/0038373A1

  16. Boeke JD, Church G, Hessel A, Kelley NJ, Arkin A, Cai Y, Carlson R, Chakravarti A, Cornish VW, Holt L, Isaacs FJ, Kuiken T, Lajoie M, Lessor T, Lunshof J, Maurano MT, Mitchell LA, Rine J, Rosser S, Sanjana NE, Silver PA, Valle D, Wang H, Way JC, Yang L (2016) The genome project-write. Science 353:126–127

    Article  PubMed  CAS  Google Scholar 

  17. Boles KS, Kannan K, Gill J, Felderman M, Gouvis H, Hubby B, Kamrud KI, Venter JC, Gibson DG (2017) Digital-to-biological converter for on-demand production of biologics. Nat Biotechnol 35:672–675

    Article  PubMed  CAS  Google Scholar 

  18. Bonde MT, Kosuri S, Genee HJ, Sarup-Lytzen K, Church GM, Sommer MO, Wang HH (2015) Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth Biol 4:17–22

    Article  PubMed  CAS  Google Scholar 

  19. Borovkov AY, Loskutov AV, Robida MD, Day KM, Cano JA, Olson TL, Patel H, Brown K, Hunter PD, Sykes KF (2010) High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucleic Acids Res 38:e180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cady KC, Barbu M, DiPetrillo CG (2016) Compositions of and methods for in vitro viral genome engineering. US Patent Application no. 2016/0186147A1

  21. Carlson R (2003) The pace and proliferation of biological technologies. Biosecur Bioterror 1:203–214

    Article  PubMed  Google Scholar 

  22. Carr P, Park J, Lee Y-J, Yu T, Zhang S, Jacobson JM (2004) Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res 32:e162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Caruthers MH (2011) A brief review of DNA and RNA chemical synthesis. Biochem Soc Trans 39:575–580

    Article  PubMed  CAS  Google Scholar 

  24. Chang ZL, Chen YY (2017) CARs: synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med 23:430–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chang ZL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY (2018) Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 14:317–324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Chao Y, Yuan Y, Zhao H (2015) Recent advances in DNA assembly techniques. FEMS Yeast Res 15:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen YY (2015) Efficient gene editing in primary human T cells. Trends Immunol 36:667–669

    Article  PubMed  CAS  Google Scholar 

  28. Claassens NJ, Sousa DZ, Dos Santos VA, de Vos WM, van der Oost J (2016) Harnessing the power of microbial autotrophy. Nat Rev Microbiol 14:692–706

    Article  PubMed  CAS  Google Scholar 

  29. Cobb RE, Ning J, Zhao H (2014) DNA assembly techniques for next generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41:469–477

    Article  PubMed  CAS  Google Scholar 

  30. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728

    Article  PubMed  CAS  Google Scholar 

  31. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826

    Article  PubMed  CAS  Google Scholar 

  33. Daringer NM, Dudek RM, Schwarz KA, Leonard JN (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth Biol 3:892–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Deaner M, Alper HS (2018) Promoter and terminator discovery and engineering. Adv Biochem Eng Biotechnol 162:21–44

    PubMed  Google Scholar 

  35. DiEuliis D, Carter SR, Gronvall GK (2017) Options for synthetic DNA order screening, revisited. mSphere 2:e00319–e00417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dormitzer PR, Suphaphiphat P, Gibson DG et al (2013) Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med 5:185ra68

    Article  PubMed  CAS  Google Scholar 

  37. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  CAS  Google Scholar 

  38. Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schäfer F, Graf M, Wagner R (2011) Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6(10):1371

    Google Scholar 

  39. Feber D (2004) Microbes made to order. Science 303:158–161

    Article  Google Scholar 

  40. Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fu J, Bian XY, Hu SB et al (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446

    Article  PubMed  CAS  Google Scholar 

  42. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchinson CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci 105:20404–20409

    Article  PubMed  Google Scholar 

  43. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6954–6990

    Article  CAS  Google Scholar 

  44. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  PubMed  CAS  Google Scholar 

  45. Gibson DG, Smith HO, Hutchison CA, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7:901–903

    Article  PubMed  CAS  Google Scholar 

  46. Gibson DG (2011) Enzymatic assembly overlapping DNA fragments. Methods Enzymol 498:349–361

    Article  PubMed  CAS  Google Scholar 

  47. Gibson DG (2014) Programming biological operating systems: genome design, assembly and activation. Nat Methods 11:521–526

    Article  PubMed  CAS  Google Scholar 

  48. Goeddel DV, Kleid D, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Nat Acad Sci USA 76:106–110

    Article  PubMed  CAS  Google Scholar 

  49. Grada Z, Hegde M, Byrd T et al (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gronvall GK (2018) Safty, security, and serving the public interest in synthetic biology. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-2026-4

    Article  PubMed  Google Scholar 

  51. Gwiazda KS, Grier AE, Sahni J et al (2016) High efficiency CRISPR/Cas9-mediated gene editing in primary human T-cells using mutant adenoviral E4orf6/E1b55k “helper” proteins. Mol Ther 24:1570–1580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  53. Halter MC, Zahn JA (2018) Characterization of a novel bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system. J Ind Microbiol Biotechnol 45:153–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ho P, Chen YY (2017) Mammalian synthetic biology in the age of genome editing and personalized medicine. Curr Opin Chem Biol 40:57–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Horbal L, Siegl T, Luzhetskyy A (2018) A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep 8:491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Itakara K, Hirose T, Crea R, Riggs AD, Heyneker HL, Boliver F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthetized gene for the hormone somatostatin. Science 198:1056–1106

    Article  Google Scholar 

  59. Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L (2017) Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163:1148–1155

    Article  PubMed  CAS  Google Scholar 

  60. Jiang WJ, Zhao XJ, Gabrieli T, Lou CB, Ebenstein Y, Zhu TF (2015) Cas9-Assisted Targeting of CHromosome segments (CATCH) enables one-step targeted cloning of large gene clusters. Nat Commun 6:8101

    Article  PubMed  PubMed Central  Google Scholar 

  61. Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153

    Article  PubMed  PubMed Central  Google Scholar 

  62. Johnson IS (1982) Human insulin from recombinant DNA technology. Science 219:632–637

    Article  Google Scholar 

  63. Karas BJ, Jablanovic J, Irvine E, Sun L, Ma L, Weyman PD, Gibson DG, Glass JI, Venter JC, Hutchison CA, Smith HO, Suzuki Y (2014) Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 9:743–750

    Article  PubMed  CAS  Google Scholar 

  64. Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176

    Article  PubMed  CAS  Google Scholar 

  65. Kitada T, DiAndreth B, Weiss R (2018) Programming gene and engineered-cell therapies with synthetic biology. Science 359:651

    Article  CAS  Google Scholar 

  66. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75

    Article  PubMed  CAS  Google Scholar 

  67. Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3:477–488

    Article  PubMed  CAS  Google Scholar 

  68. Kosuri S, Eroshenko N, Leproust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11:499–507

    Article  PubMed  CAS  Google Scholar 

  70. Larionov V, Kouprina N, Graves J, Chen XN, Korenberg JR, Resnick MA (1996) Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 93:491–496

    Article  PubMed  CAS  Google Scholar 

  71. Lee ME, DeLoache WC, Cervantes B, Dueber JE (2015) A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth Biol 18:975–986

    Article  CAS  Google Scholar 

  72. Lee H, Kim H, Kim S, Ryu T, Kim H, Bang D, Kwon S (2015) A high-throughput optomechanical retrieval method for sequence-verified clonal DNA from the NGS platform. Nat Commun 6:6073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, Caruthers MH (2010) Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38:2522–2540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed  CAS  Google Scholar 

  75. Lian J, HamediRad M, Zhao H (2017) Combinatorial metabolic engineering using as orthogonal tri-functional CRISPR system. Nat Commun 8:1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Liang J, Liu Z, Ang E, Zhao H (2017) Twin-primer non-enzymatic DNA assembly: an efficient and accurate multi-part DNA assembly method. Nucleic Acids Res 45:e94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Liang L, Liu R, Garst AD, Lee T, Nogué VSI, Beckham GT, Gill RT (2017) CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metab Eng 41:1–10

    Article  PubMed  CAS  Google Scholar 

  78. Lim KI, Klimczak R, Xu JH et al (2010) Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci USA 107:12475–12480

    Article  PubMed  Google Scholar 

  79. Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 4:2894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Luo Y, Zhang L, Barton KW, Zhao H (2015) Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol 4:1001–1010

    Article  PubMed  CAS  Google Scholar 

  81. Ma S, Tang N, Tian J (2012) DNA synthesis, assembly and applications in synthetic biology. Curr Opin Chem Biol 16:260–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  PubMed  CAS  Google Scholar 

  84. Maurer K, Cooper J, Caraballo M et al (2006) Electrochemically generated acid and its containment to 100 micron reaction areas for the production of DNA microarrays. PLoS One 1:e34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Meadows AL, Hawkins KM, Tsegaye Y et al (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697

    Article  PubMed  CAS  Google Scholar 

  86. Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Article  PubMed  CAS  Google Scholar 

  87. Minhaz SM (2008) A theoretical model for template-free synthesis of long DNA sequence. Syst Synth Biol 2:67–73

    Article  Google Scholar 

  88. Morsut L, Roybal KT, Xiong X et al (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164:780–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Müller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais JC, Vorholt JA (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201

    Article  PubMed  CAS  Google Scholar 

  90. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23:644–650

    Article  PubMed  CAS  Google Scholar 

  91. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  PubMed  CAS  Google Scholar 

  92. Nesbeth DN, Zaikin A, Saka Y, Romano MC, Giuraniuc CV, Kanakov O, Laptyeva T (2016) Synthetic biology routes to bio-artificial intelligence. Essays Biochem 60(4):381–391

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nielson AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016) Genetic circuit design automation. Science 352:aac7341

    Article  CAS  Google Scholar 

  94. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 2164:1185–1197

    Article  CAS  Google Scholar 

  95. Peterson TC, Trefzer A, Poehmerer T (2015) High efficiency, small volume nucleic acid synthesis. US Patent Application No. 2015/0344876

  96. Phelan RM, Sachs D, Petkiewicz SJ et al (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6:159–166

    Article  PubMed  CAS  Google Scholar 

  97. Porteus MH, Carroll D (2017) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  Google Scholar 

  98. Qasim W, Zhan H, Samarasinghe S et al (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9:374

    Article  Google Scholar 

  99. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform fos sequence-specific control of gene expression. Cell 152:1173–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Quan J, Saaem I, Tang N, Ma S, Negre N, Gong H, White KP, Tian J (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29:449–452

    Article  PubMed  CAS  Google Scholar 

  101. Ren H, Wang B, Zhao H (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27

    Article  PubMed  CAS  Google Scholar 

  102. Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, Lee D, Huang CLV, Chandrasegaran, Cai Y, Boeke JD, Bader JS (2017) Design of a synthetic yeast genome. Science 355:1040–1044

    Article  PubMed  CAS  Google Scholar 

  103. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  PubMed  CAS  Google Scholar 

  104. Ronda C, Pedersen LE, Sommer MO, Nielsen AT (2016) CRMAGE: CRISPR Optimized MAGE Recombineering. Sci Rep 6:19452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Roy S, Caruthers M (2013) Synthesis of DNA/RNA and their analogs via phosphonamidite and H-phosphonate chemistries. Molecules 18:14269–14284

    Article  CAS  Google Scholar 

  106. Saaem I, Ma S, Quan J, Tian J (2012) Error correction of microchip synthesized genes using Surveyor nuclease. Nucleic Acids Res 40:1–8

    Article  CAS  Google Scholar 

  107. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol 27:946–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Schwartz JJ, Lee C, Shendure J (2012) Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. Nat Methods 9:913–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sekiya T, Takeya T, Brown EL, Belagaje R, Contreras R, Fritz HJ, Gait MJ, Lees RG, Ryan MJ, Khorana HG (1979) Total synthesis of a tyrosine suppressor transfer RNA gene: enzymatic joinings to form a total 207-base pair-long DNA. J Biol Chem 254:5787–5801

    PubMed  CAS  Google Scholar 

  110. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  PubMed  CAS  Google Scholar 

  111. Shi S, Ang EL, Zhao H (2018) In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-1-018-2004-x

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185

    Article  PubMed  PubMed Central  Google Scholar 

  113. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    Article  PubMed  CAS  Google Scholar 

  114. Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxynucleotides. Gene 164:49–53

    Article  PubMed  CAS  Google Scholar 

  115. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principle and prospects. Angew Chem Int Ed 56:3770–3823

    Article  CAS  Google Scholar 

  116. Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster form Klebsiella oxytoca. Proc Natl Acad Sci USA 109:7085–7090

    Article  PubMed  Google Scholar 

  117. Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis form programmable DNA microchips. Nature 432:1050–1054

    Article  PubMed  CAS  Google Scholar 

  118. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029

    Article  PubMed  CAS  Google Scholar 

  120. Tsuji T, Niida Y (2008) Development of a simple and highly sensitive mutation screening system by enzyme mismatch cleavage with optimized conditions for standard laboratories. Electrophoresis 29:1473–1483

    Article  PubMed  CAS  Google Scholar 

  121. Voigt CA (2012) Synthetic biology. ACS Synth Biol 1:12

    Google Scholar 

  122. Voigt CA, Keasling JD (2005) Programming cellular function. Nat Chem Biol 1:304–307

    Article  PubMed  CAS  Google Scholar 

  123. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–886

    Article  PubMed  CAS  Google Scholar 

  126. Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–670

    Article  PubMed  CAS  Google Scholar 

  127. Wintle BC, Boehm CR, Rhodes C, Molloy JC, Millett P, Adam L, Breitling R, Carlson R, Casagrande R, Dando M, Doubleday R, Drexler E, Edwards B, Ellis T, Evans NG, Hammond R, Haseloff J, Kahl L, Kuiken T, Lichman BR, Matthewman CA, Napier JA, ÓhÉigeartaigh SS, Patron NJ, Perello E, Shapira P, Tait J, Takano E, Sutherland WJ (2017) A transatlantic perspective on 20 emerging issues in biological engineering. Elife 6:e30247

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wright DA, Thiobodeau-Beganny S, Sander JD et al (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652

    Article  PubMed  Google Scholar 

  129. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  PubMed  CAS  Google Scholar 

  130. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  PubMed  CAS  Google Scholar 

  131. Yamanaka K, Reynolds KA, Kersten RD et al (2014) Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Nat Acad Sci USA 111:1957–1962

    Article  PubMed  CAS  Google Scholar 

  132. Yim H, Haselbeck R, Niu W et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  PubMed  CAS  Google Scholar 

  133. Yuzawa S, Deng K, Wang G, Baidoo EEK, Northen TR, Adams PD, Katz L, Keasling JD (2017) Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short chain ketone production. ACS Synth Biol 6:139–147

    Article  PubMed  CAS  Google Scholar 

  134. Yuzawa S, Backman WH, Keasling JD, Katz L (2018) Synthetic biology of polyketide synthases. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-018-2021-9

    Article  PubMed  Google Scholar 

  135. Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY (2016) T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4:498–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zeitoun RI, Garst AD, Degen GD, Pines G, Mansell TJ, Mills TY, Boyle NR, Gill RT (2015) Multiplexed tracking of the evolutionary trajectory of combinatorial genome engineered populations. Nat Biotechnol 33:631–637

    Article  PubMed  CAS  Google Scholar 

  137. Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99:10575–10585

    Article  PubMed  CAS  Google Scholar 

  139. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotech 30:354–359

    Article  CAS  Google Scholar 

  140. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang E, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609

    Article  CAS  Google Scholar 

  141. Zhang YP, Sun J, Ma Y (2017) Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 44:773–784

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Baltz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, L., Chen, Y.Y., Gonzalez, R. et al. Synthetic biology advances and applications in the biotechnology industry: a perspective. J Ind Microbiol Biotechnol 45, 449–461 (2018). https://doi.org/10.1007/s10295-018-2056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2056-y

Keywords

Navigation