Skip to main content
Log in

Construction of a plasmid interspecific transfer system in Bacillus species with the counter-selectable marker mazF

  • Biotechnology Methods - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bacillus sp. strains as attractive hosts for the production of heterologous secretory proteins usually play important roles in bio-industry. However, low transformation efficiency of exogenous plasmids limited the application of Bacillus species. Here, a novel plasmid interspecific transfer system, with high transformation efficiency, high positive rate, and convenient manipulation, has been successfully constructed. A high electrotransformation efficiency strain Bacillus subtilis F-168 containing the counter-selectable marker mazF was used as the plasmid donor strain in this transfer method. A shuttled plasmid pBE980 and its recombinant plasmids pBE980::pulA and pBE980::HSPA were successfully transferred into the recipient Bacillus strains (Bacillus amyloliquefaciens 66, Bacillus licheniformis 124 and Bacillus megaterium 258) by this method. After co-culturing the donor cells (OD600nm = 1.3–1.7) and the recipient cells (OD600nm = 0.5–0.9) for 24 h in 22 °C, more than 1.0 × 105 positive transformants were obtained and a interspecific transformation efficiency of 1.0 × 10−3. It would provide a new approach for genetic manipulation in Bacillus strains and accelerate the research progress of the wild Bacillus strains in bio-industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akamatsu T, Taguchi H (2012) Plasmid transformation of competent Bacillus subtilis by lysed protoplast DNA. J Biosci Bioeng 114:138–143

    Article  PubMed  CAS  Google Scholar 

  2. Chen Y-YM, Shieh H-R, Lin C-T et al (2011) Properties and construction of plasmid pFW213, a shuttle vector with the oral Streptococcus origin of replication. Appl Environ Microb 77:3967–3974

    Article  CAS  Google Scholar 

  3. Chowdhury SP, Hartmann A, Gao X et al (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao C, Xue Y, Ma Y (2011) Protoplast transformation of recalcitrant alkaliphilic Bacillus sp. with methylated plasmid DNA and a developed hard agar regeneration medium. PLoS One 6:e28148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hmani H, Daoud L, Jlidi M et al (2017) A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities. J Ind Microbiol Biot 44:1157–1166

    Article  CAS  Google Scholar 

  6. Jensen GB, Wilcks A, Petersen SS et al (1995) The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J Bacteriol 177:2914–2917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kolodkin-Gal I, Hazan R, Gaathon A et al (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318:652–655

    Article  PubMed  CAS  Google Scholar 

  8. Li Y, Gu Z, Zhang L et al (2017) Inducible expression of trehalose synthase in Bacillus licheniformis. Protein Expr Purif 130:115–122

    Article  PubMed  CAS  Google Scholar 

  9. Liu L, Liu Y, Shin HD et al (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biot 97:6113–6127

    Article  CAS  Google Scholar 

  10. Melo AL, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326

    Article  PubMed  CAS  Google Scholar 

  11. Naglich JG, Andrews RE Jr (1988) Tn916-dependent conjugal transfer of PC194 and PUB110 from Bacillus subtilis into Bacillus thuringiensis subsp. israelensis. Plasmid 20:113–126

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen HD, Nguyen QA, Ferreira RC et al (2005) Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54:241–248

    Article  PubMed  CAS  Google Scholar 

  13. Philibert T, Rao Z, Yang T et al (2016) Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168. J Ind Microbiol Biot 43:729–740

    Article  CAS  Google Scholar 

  14. Sambrock J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  15. Sella SR, Vandenberghe LP, Soccol CR (2015) Bacillus atrophaeus: main characteristics and biotechnological applications—a review. Crit Rev Biotechnol 35:533–545

    Article  PubMed  CAS  Google Scholar 

  16. Song P, Liu S, Guo X et al (2015) Scarless gene deletion in methylotrophic Hansenula polymorpha by using mazF as counter-selectable marker. Anal Biochem 468:66–74

    Article  PubMed  CAS  Google Scholar 

  17. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. P Natl Acad Sci USA 44:1072–1078

    Article  CAS  Google Scholar 

  18. Strohmaier H, Noiges R, Kotschan S et al (1998) Signal transduction and bacterial conjugation: characterization of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. J Mol Biol 277:309–316

    Article  PubMed  CAS  Google Scholar 

  19. Titok MA, Chapuis J, Selezneva YV et al (2003) Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 49:53–62

    Article  PubMed  CAS  Google Scholar 

  20. Tjalsma H, Koetje EJ, Kiewiet R et al (2004) Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis. J Appl Microbiol 96:569–578

    Article  PubMed  CAS  Google Scholar 

  21. Tominaga Y, Ohshiro T, Suzuki H (2016) Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species. Extremophiles 20:375–381

    Article  PubMed  CAS  Google Scholar 

  22. Wu SC, Wong SL (1999) Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. J Biotechnol 72:185–195

    Article  PubMed  CAS  Google Scholar 

  23. Xue G-P, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–191

    Article  CAS  Google Scholar 

  24. Yzturk S, Yalik P, Yzdamar TH (2016) Fed-batch biomolecule production by Bacillus subtilis: a state of the art review. Trends Biotechnol 34:329–345

    Article  PubMed  CAS  Google Scholar 

  25. Zhang K, Duan X, Wu J (2016) Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep UK 6:27943

    Article  CAS  Google Scholar 

  26. Zhang XZ, Yan X, Cui ZL et al (2006) mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34:e71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang XZ, You C, Zhang YH (2014) Transformation of Bacillus subtilis. In: Sun L, Shou W (eds) Engineering and analyzing multicellular systems. Methods in molecular biology (methods and protocols), vol 1151. Humana Press, New York

    Google Scholar 

  28. Zhang Z, Ding ZT, Shu D et al (2015) Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. Int J Mol Sci 16:7334–7351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zheng H, Liu Y, Liu X et al (2012) Overexpression of a Paenibacillus campinasensis xylanase in Bacillus megaterium and its applications to biobleaching of cotton stalk pulp and saccharification of recycled paper sludge. Bioresour Technol 125:182–187

    Article  PubMed  CAS  Google Scholar 

  30. Zhou C, Shi L, Ye B et al (2017) pheS (*), an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biot 101:217–227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund of China (Grant 31701534), the Key Deployment Project in Chinese Academy of Sciences (Grant KFJ-STS-ZDTP-016-1, KFZD-SW-211-2), and the Tianjin Science & Technology Planning Project (Grant 16YFZCSY00790,16YFXTSY00530 and 15YFYssy00040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HongChen Zheng or Hui Song.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Xu, J., Tan, M. et al. Construction of a plasmid interspecific transfer system in Bacillus species with the counter-selectable marker mazF. J Ind Microbiol Biotechnol 45, 417–428 (2018). https://doi.org/10.1007/s10295-018-2038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2038-0

Keywords

Navigation