Skip to main content
Log in

Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

By the facile adhesion way, the novel composite complex by polydopamine (PDA) and magnetic graphite nanosheets (Fe3O4@GNSs) has been successfully synthesized. The resulting composite was characterized by means of scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, and Raman spectra, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Meanwhile, the PDA functionalized Fe3O4@GNSs (Fe3O4@GNSs-PDA) was applied for Candida rugosa lipase (CRL) immobilization covalently without any toxic coupling agent. Combining the superior physical properties and chemical stability of Fe3O4@GNSs and the well biocompatibility, functional characteristics of PDA, the Fe3O4@GNSs-PDA composite displayed several advantages, including the high enzyme capacity, enzyme activity and stability and a decrease in enzyme loss. Our work demonstrated that the mussel-inspired Fe3O4@GNSs can be extended to many other applications such as biocatalytic, genetic and industrial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garcia J, Zhang Y, Taylor H, Cespedes O, Webb ME, Zhou DJ (2011) Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale 3:3721–3730

    Article  CAS  PubMed  Google Scholar 

  2. Ince A, Bayramoglu G, Karagoz B, Altintas B, Bicak N, Arica MY (2012) A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem Eng J 189–190:404–412

    Article  Google Scholar 

  3. Torres CF, Hill CG Jr (2004) Lipase-catalyzed acidolysis of butter oil with conjugated linoleic acid: a kinetic study involving multiple reuse of the immobilized enzyme. Ind Eng Chem Res 43:3714–3722

    Article  CAS  Google Scholar 

  4. Sanchez S, Demain AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15:224–230

    Article  CAS  Google Scholar 

  5. Kim JB, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  6. Chang SW, Shaw JF, Yang KH, Chang SF, Shieh CJ (2008) Studies of optimum conditions for covalent immobilization of < i > Candida rugosa </i > lipase on poly (γ-glutamic acid) by RSM. Bioresour Technol 99:2800–2805

    Article  CAS  PubMed  Google Scholar 

  7. Grunwald P, Hansen K, Gunßer W (1997) The determination of effective diffusion coefficients in a polysaccharide matrix used for the immobilization of biocatalysts. Solid State Ionics 101–103:863–867

    Article  Google Scholar 

  8. Shen WZ, Ren LW, Zhou H, Zhang SC, Fan WB (2011) Facile one-pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support. J Mater Chem 21:3890–3894

    Article  CAS  Google Scholar 

  9. Yang XW, Cai ZW, Ye ZM, Chen S, Yang Y, Wang HF (2012) In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes. Nanoscale 4:414–416

    Article  CAS  PubMed  Google Scholar 

  10. Mei L, Xie R, Yang C, Ju XJ, Wang W, Wang JY (2013) pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction. Chem Eng J 232:573–581

    Article  CAS  Google Scholar 

  11. Xu R, Zhou QJ, Li FT, Zhang BR (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329

    Article  CAS  Google Scholar 

  12. Geim AK (2009) Graphene: status and Prospects. Science 324:1530–1534

    Article  CAS  PubMed  Google Scholar 

  13. Bak JM, Lee H (2012) pH-tunable aqueous dispersion of graphene composites functionalized with poly (acrylic acid) brushes. Polymer 53:4955–4960

    Article  CAS  Google Scholar 

  14. Eswaraiah V, Balasubramaniam K, Ramaprabhu S (2012) One-pot synthesis of conducting grapheme-polymer composites and their strain sensing application. Nanoscale 4:1258–1262

    Article  CAS  PubMed  Google Scholar 

  15. Liang RP, Liu CM, Meng XY, Wang JW, Qiu JD (2012) A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic composite s as tunable stationary phase. J Chromatogr A 1266(95–102):17

    Google Scholar 

  16. Lin Y, Tao Y, Pu F, Ren J, Qu X (2011) Combination of graphene oxide and thiol-activated DNA metallization for sensitive fluorescence turn-on detection of cysteine and their use for logic gate operations. Adv Funct Mater 21:4565–4572

    Article  CAS  Google Scholar 

  17. Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N (2012) Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv Mater 24:125–131

    Article  CAS  PubMed  Google Scholar 

  18. Nam B, Lee HJ, Goh H, Lee YB, Choi WS (2012) Sandwich-like graphene composite s armed with nanoneedles. J Mater Chem 22:3148–3153

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S (2012) Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8:154–159

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Wei B, Zhang XT, Li C (2013) Bifunctional graphene/γ-Fe2O3 hybrid aerogels with double nanocrystalline networks for enzyme immobilization. Small 9:2331–2340

    Article  CAS  PubMed  Google Scholar 

  21. Ma YX, Li YF, Zhao GH, Yang LQ, Wang JZ, Shan X (2011) Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase. Carbon 50:2976–2986

    Article  Google Scholar 

  22. Cheng G, Liu YL, Wang ZG, Zhang JL, Sun DH, Ni JZ (2012) The GO/rGO-Fe3O4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules. J Mater Chem 22:21998–22004

    Article  CAS  Google Scholar 

  23. Li XH, Zhu H, Feng J, Zhang JW, Deng X, Zhou BF (2013) One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497

    Article  CAS  Google Scholar 

  24. Kang K, Choi IS, Nam Y (2011) A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials 32:6374–6380

    Article  CAS  PubMed  Google Scholar 

  25. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Nature 318:426–430

    CAS  Google Scholar 

  26. Chen X, Yan Y, Mullner M, Koeverden MP, Noi KF, Zhu W (2014) Engineering fluorescent poly(dopamine) capsules. Langmuir 30:2921–2925

    Article  CAS  PubMed  Google Scholar 

  27. Yan YH, Zheng ZF, Deng CH, Zhang XM, Yang PY (2013) Facile synthesis of Ti4 + -immobilized Fe3O4@ polydopamine core–shell microspheres for highly selective enrichment of phosphopeptides. Chem Commun 49:5055–5057

    Article  CAS  Google Scholar 

  28. Hoa CC, Ding SJ (2014) Dopamine-induced silica–polydopamine hybrids with controllable morphology. Chem Commun 50:3602–3605

    Article  Google Scholar 

  29. Faure E, Daudré CF, Jérôme C, Lyskawa J, Fournier D, Woisel P (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38:236–270

    Article  CAS  Google Scholar 

  30. Ma ZY, Jia X, Hu JM, Zhang GX, Zhou F, Liu ZY (2013) Dual-responsive capsules with tunable low critical solution temperatures and their loading and release behavior. Langmuir 29:5631–5637

    Article  CAS  PubMed  Google Scholar 

  31. Raghavendra T, Basak A, Manocha LM, Shah AR, Madamwar D (2013) Robust nanobioconjugates of Candida antarctica lipase B-Multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Bioresource Technol 140:103–110

    Article  CAS  Google Scholar 

  32. Martín M, Salazar P, Villalonga E, Campuzano S, Pingarrónd JM, González-Mora JL (2014) Preparation of core-shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B 2:739–746

    Article  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  34. Ren LL, Huang S, Fan W, Liu TX (2011) One-step preparation of hierarchical superparamagnetic iron oxide/grapheme composites via hydrothermal method. Appl Surf Sci 258:1132–1138

    Article  CAS  Google Scholar 

  35. Kassaee MZ, Masrouri H, Movahedi F (2011) Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of a-amino nitriles in water. Appl Catal A Gen 395:28–33

    Article  CAS  Google Scholar 

  36. Watanabe N, Yasude O, Yasuji M, Koichi Y (1977) Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of crude enzyme. Agric Biol Chem 41:1353–1358

    Article  CAS  Google Scholar 

  37. Zhao S, Asuha S (2010) One-pot synthesis of magnetite nanopowder and their magnetic properties. Powder Technol 197:295–297

    Article  CAS  Google Scholar 

  38. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Edit 44:2782–2785

    Article  CAS  Google Scholar 

  39. Song C, Wu D, Zhang F, Liu P, Lu Q, Feng X (2012) Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem Commun 48:2119–21121

    Article  CAS  Google Scholar 

  40. Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26

    Article  CAS  PubMed  Google Scholar 

  41. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  42. Liu YQ, Gao L, Sun J, Wang Y, Zhang J (2009) Stable Nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20:465605–465611

    Article  PubMed  Google Scholar 

  43. Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857

    Article  CAS  Google Scholar 

  44. Fei B, Qiana BT, Yanga ZY, Wanga RH, Liu WC, Mak CL (2008) Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46:1792–1828

    Article  Google Scholar 

  45. Nagai N, Kumasaka N, Kawashima T, Ka JH, Nishizawa M, Abe T (2010) Preparation and characterization of collagen microspheres for sustained release of VEGF. J Mater Sci-Mater M 21:1891–1898

    Article  CAS  Google Scholar 

  46. Powell HM, Drexler JW (2011) Dehydrothermal crosslinking of electrospun collagen. Tissue Engineering Part C-Meth 17:9–17

    Article  Google Scholar 

  47. Liu X, Chen X, Li YF, Wang XY, Peng XM, Zhu WW (2012) Preparation of superparamagnetic Fe3O4@Alginate/Chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. Appl Mater Interfaces 4:5169–5178

    Article  CAS  Google Scholar 

  48. Liu T, Zhao YD, Wang XF, Li X, Yan YJ (2013) A novel oriented immobilized lipase on magnetic nanoparticles in reverse micelles system and its application in the enrichment of polyunsaturated fatty acids. Bioresource Technol 132:99–102

    Article  CAS  Google Scholar 

  49. Mateo C, Palomo JM, Fernandez LG, Guisan JM, Fernandez LR (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  50. Rabbani G, Ahmad E, Zaidi N, Fatima S, Khan RH (2012) pH-induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem Biophys 62:487–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from the National Natural Science Foundation of China (No. 21374045), the scientific research ability training of under-graduate students majoring in chemistry by the two patters based on the tutorial system and top students (J1103307) and the Opening Foundation of State Key Laboratory of Applied Organic Chemistry (SKLAOC-2009-35).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhu.

Additional information

This paper is dedicated to memory of pro. Yanfeng Li, who passed away recently.

Chen Hou and Hao Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Zhou, L., Zhu, H. et al. Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization. J Ind Microbiol Biotechnol 42, 723–734 (2015). https://doi.org/10.1007/s10295-015-1602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1602-0

Keywords

Navigation