Skip to main content
Log in

Triacetic acid lactone production in industrial Saccharomyces yeast strains

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into 13 industrial yeast strains of varied genetic background. TAL production varied 63-fold between strains when compared in batch culture with glucose. Ethanol, acetate, and glycerol were also tested as potential carbon sources. Batch cultures with ethanol medium produced the highest titers. Therefore, fed-batch cultivation with ethanol feed was assayed for TAL production in bioreactors, producing our highest TAL titer, 5.2 g/L. Higher feed rates resulted in a loss of TAL and subsequent production of additional TAL side products. Finally, TAL efflux was measured and TAL is actively exported from S. cerevisiae cells. Percent yield for all strains was low, indicating that further metabolic engineering of the strains is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abaecherli C, Miller RJ (2000) Ketenes, ketene dimers, and related substances. In: Kroschwitz JI, Howe-Grant M (eds) Kirk–Othmer encyclopedia of chemical technology. 4th edn. Wiley. doi:10.1002/0471238961.1105200501020105.a01

  2. Achkar J, Xian M, Zhao H, Frost JW (2005) Biosynthesis of phloroglucinol. J Am Chem Soc 127(15):5332–5333. doi:10.1021/ja042340g

    Article  CAS  PubMed  Google Scholar 

  3. Bera AK, Ho NW, Khan A, Sedlak M (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biot 38(5):617–626. doi:10.1007/s10295-010-0806-6

    Article  CAS  Google Scholar 

  4. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287. doi:10.1371/journal.pgen.1001287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Borneman AR, Forgan AH, Pretorius IS, Chambers PJ (2008) Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8(7):1185–1195. doi:10.1111/j.1567-1364.2008.00434.x

    Article  CAS  PubMed  Google Scholar 

  6. Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311. doi:10.1128/AEM.02522-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cardenas J, Da Silva NA (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metab Eng 25:194–203. doi:10.1016/j.ymben.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Chen B, Ling H, Chang MW (2013) Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):21. doi:10.1186/1754-6834-6-21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54. doi:10.1016/j.ymben.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  10. Chia M, Schwartz TJ, Shanks BH, Dumesic JA (2012) Triacetic acid lactone as a potential biorenewable platform chemical. Green Chem 14(7):1850–1853. doi:10.1039/C2gc35343a

    Article  CAS  Google Scholar 

  11. de Jong-Gubbels P, van den Berg MA, Luttik MA, Steensma HY, van Dijken JP, Pronk JT (1998) Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess. FEMS Microbiol Lett 165(1):15–20 pii: S0378-1097(98)00249-3

    Article  PubMed  Google Scholar 

  12. de Jong-Gubbels P, Vanrolleghem P, Heijnen S, van Dijken JP, Pronk JT (1995) Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 11(5):407–418. doi:10.1002/yea.320110503

    Article  PubMed  Google Scholar 

  13. Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89. doi:10.1186/1754-6834-6-89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno MR, Thevelein JM (2013) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6(1):120. doi:10.1186/1754-6834-6-120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487. doi:10.1038/msb.2011.21

    Article  PubMed Central  PubMed  Google Scholar 

  16. Eckermann S, Schroder G, Schmidt J, Strack D, Edrada RA, Helariutta Y, Elomaa P, Kotilainen M, Kilpelainen I, Proksch P, Teeri TH, Schroder J (1998) New pathway to polyketides in plants. Nature 396(6709):387–390. doi:10.1038/24652

    Article  CAS  Google Scholar 

  17. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman and Company, New York, pp 132–168

  18. Garcia Sanchez R, Karhumaa K, Fonseca C, Sanchez Nogue V, Almeida JR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13. doi:10.1186/1754-6834-3-13

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gietz D, Woods RA (2002) Transformation of yeasts by the lithium acetate/single-stranded carrier/polyethylene glycol method. Methods Enzymol 350:87–96. doi:10.1016/S0076-6879(02)50957-5

    Article  CAS  PubMed  Google Scholar 

  20. Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441–1451. doi:10.1128/JB.183.4.1441-1451.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hansen CA, Frost JW (2001) Deoxygenation of polyhydroxybenzenes: an alternative strategy for the benzene-free synthesis of aromatic chemicals. J Am Chem Soc 124:5926–5927. doi:10.1021/ja0176346

    Article  Google Scholar 

  22. Hector RE, Dien BS, Cotta MA, Qureshi N (2011) Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol 38(9):1193–1202. doi:10.1007/s10295-010-0896-1

    Article  CAS  PubMed  Google Scholar 

  23. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395–400. doi:10.1126/science.1070850

    Article  CAS  PubMed  Google Scholar 

  24. Klis FM, de Koster CG, Brul S (2014) Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell 13(1):2–9. doi:10.1128/EC.00250-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran J-MG, Pronk JT, van Maris AJA (2014) Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21:46–59. doi:10.1016/j.ymben.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40(9):1051–1056. doi:10.1007/s10295-013-1296-0

    Article  CAS  PubMed  Google Scholar 

  27. Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng. doi:10.1016/j.ymben.2014.05.010

    Google Scholar 

  28. Modig T, Almeida JR, Gorwa-Grauslund MF, Liden G (2008) Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 100(3):423–429. doi:10.1002/bit.21789

    Article  CAS  PubMed  Google Scholar 

  29. Nikolau BJ, Perera MADN, Brachova L, Shanks B (2008) Platform biochemicals for a biorenewable chemical industry. Plant J 54(4):536–545. doi:10.1111/j.1365-313X.2008.03484.x

    Article  CAS  PubMed  Google Scholar 

  30. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol. doi:10.1038/nrmicro3240

    PubMed  Google Scholar 

  31. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532. doi:10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  32. Papini M, Nookaew I, Uhlen M, Nielsen J (2012) Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb Cell Fact 11:136. doi:10.1186/1475-2859-11-136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Pereira FB, Romani A, Ruiz HA, Teixeira JA, Domingues L (2014) Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour Technol 161C:192–199. doi:10.1016/j.biortech.2014.03.043

    Article  Google Scholar 

  34. Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    CAS  PubMed  Google Scholar 

  35. Pronk JT, Yde Steensma H, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607–1633. doi:10.1002/(SICI)1097-0061(199612)12:16<1607:AID-YEA70>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  36. Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66(8):3151–3159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS ONE 6(3):e17678. doi:10.1371/journal.pone.0017678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Richardson MT, Pohl NL, Kealey JT, Khosla C (1999) Tolerance and Specificity of recombinant 6-methylsalicylic acid synthase. Metab Eng 1:180–187. doi:10.1006/mben.1999.0113

    Article  CAS  PubMed  Google Scholar 

  39. Sa-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP (2009) Drug: H+ antiporters in chemical stress response in yeast. Trends Microbiol 17(1):22–31. doi:10.1016/j.tim.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  40. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  41. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19(12):2271–2278. doi:10.1101/gr.094276.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Steiner S, Philippsen P (1994) Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol Gen Genet 242(3):263–271

    Article  CAS  PubMed  Google Scholar 

  44. Swinnen S, Klein M, Carrillo M, McInnes J, Nguyen HTT, Nevoigt E (2013) Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements. Biotechnol Biofuels 6:157. doi:10.1186/1754-6834-6-157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tang SY, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135(27):10099–10103. doi:10.1021/ja402654z

    Article  CAS  PubMed  Google Scholar 

  46. Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cabral MG, Sa-Correia I (2002) AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292(3):741–748. doi:10.1006/bbrc.2002.6703

    Article  CAS  PubMed  Google Scholar 

  47. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109(3):E111–E118. doi:10.1073/pnas.1110740109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wohlbach DJ, Rovinskiy N, Lewis JA, Sardi M, Schackwitz WS, Martin JA, Deshpande S, Daum CG, Lipzen A, Sato TK, Gasch AP (2014) Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production. Genome Biol Evol. doi:10.1093/gbe/evu199

    PubMed Central  PubMed  Google Scholar 

  49. Xie D, Shao Z, Achkar J, Zha W, Frost JW, Zhao H (2006) Microbial synthesis of triacetic acid lactone. Biotechnol Bioeng 93(4):727–736. doi:10.1002/bit.20759

    Article  CAS  PubMed  Google Scholar 

  50. Zha W, Shao Z, Frost JW, Zhao H (2004) Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from d-glucose in vivo. J Am Chem Soc 126(14):4534–4535. doi:10.1021/ja0317271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katherine Card for her excellent technical assistance throughout this study. The authors would also like to thank Dr. Joseph Noel (Salk Institute) for the g2ps1 gene encoding the 2-pyrone synthase.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. Hector.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunders, L.P., Bowman, M.J., Mertens, J.A. et al. Triacetic acid lactone production in industrial Saccharomyces yeast strains. J Ind Microbiol Biotechnol 42, 711–721 (2015). https://doi.org/10.1007/s10295-015-1596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1596-7

Keywords

Navigation