Skip to main content
Log in

Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Recently, butanols (1-butanol, 2-butanol and iso-butanol) have generated attention as alternative gasoline additives. Butanols have several properties favorable in comparison to ethanol, and strong interest therefore exists in the reconstruction of the 1-butanol pathway in commonly used industrial microorganisms. In the present study, the biosynthetic pathway for 1-butanol production was reconstructed in the yeast Saccharomyces cerevisiae. In addition to introducing heterologous enzymes for butanol production, we engineered yeast to have increased flux toward cytosolic acetyl-CoA, the precursor metabolite for 1-butanol biosynthesis. This was done through introduction of a plasmid-containing genes for alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA synthetase (ACS), and acetyl-CoA acetyltransferase (ERG10), as well as the use of strains containing deletions in the malate synthase (MLS1) or citrate synthase (CIT2) genes. Our results show a trend to increased butanol production in strains engineered for increased cytosolic acetyl-CoA levels, with the best-producing strains having maximal butanol titers of 16.3 mg/l. This represents a 6.5-fold improvement in butanol titers compared to previous values reported for yeast and demonstrates the importance of an improved cytosolic acetyl-CoA supply for heterologous butanol production by this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  PubMed  CAS  Google Scholar 

  2. Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335–341. doi:10.1038/nbt.2509

    Article  PubMed  CAS  Google Scholar 

  3. Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227. doi:10.1038/Nchembio.537

    Article  PubMed  CAS  Google Scholar 

  4. Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54. doi:10.1016/j.ymben.2012.11.002

    Article  PubMed  CAS  Google Scholar 

  5. Chen Y, Partow S, Scalcinati G, Siewers V, Nielsen J (2012) Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Res 12:598–607. doi:10.1111/j.1567-1364.2012.00809.x

    Article  PubMed  CAS  Google Scholar 

  6. Chen Y, Siewers V, Nielsen J (2012) Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 7:e42475. doi:10.1371/journal.pone.0042475

    Article  PubMed  CAS  Google Scholar 

  7. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40(Database issue):D700–D705. doi:10.1093/nar/gkr1029

    Article  PubMed  CAS  Google Scholar 

  8. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  PubMed  Google Scholar 

  9. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  PubMed  CAS  Google Scholar 

  10. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  11. Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218. doi:10.1016/j.biotechadv.2011.10.011

    Article  PubMed  CAS  Google Scholar 

  12. Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657

    Article  PubMed  CAS  Google Scholar 

  13. Huffer S, Roche CM, Blanch HW, Clark DS (2012) Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol 30:538–545. doi:10.1016/j.tibtech.2012.07.002

    Article  PubMed  CAS  Google Scholar 

  14. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  PubMed  CAS  Google Scholar 

  15. Kocharin K, Chen Y, Siewers V, Nielsen J (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2:52. doi:10.1186/2191-0855-2-52

    Article  PubMed  CAS  Google Scholar 

  16. Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6:262–276. doi:10.1002/biot.201000308

    Article  PubMed  CAS  Google Scholar 

  17. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  PubMed  CAS  Google Scholar 

  18. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273. doi:10.1016/j.ymben.2009.05.003

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8:122–131. doi:10.1111/j.1567-1364.2007.00302.x

    Article  PubMed  CAS  Google Scholar 

  20. Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Osteras M, Schalk M, Clark A, Nielsen J (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 11:723. doi:10.1186/1471-2164-11-723

    Article  PubMed  Google Scholar 

  21. Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, Bro C, Hansen LK, Brunak S, Nielsen J (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7:13. doi:10.1186/gb-2006-7-11-r107

    Article  Google Scholar 

  22. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915. doi:10.1128/AEM.03034-10

    Google Scholar 

  23. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320. doi:10.1016/j.ymben.2008.08.001

    Article  PubMed  CAS  Google Scholar 

  24. Shiba Y, Paradise EM, Kirby J, Ro DK, Keasing JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168. doi:10.1016/j.ymben.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  25. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7. doi:10.1186/1475-2859-7-36

  26. Tucci S, Martin W (2007) A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola. FEBS Lett 581:1561–1566 pii: S0014-5793(07)00269-4

    Article  PubMed  CAS  Google Scholar 

  27. van Hoek P, van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233

    PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded in part by the Chalmers Foundation, the Knut and Alice Wallenberg Foundation, and the European Research Council. C.S.A. is the recipient of an FPU predoctoral fellowship from the Spanish Ministerio de Educación. A. K. is a recipient of an Ångpanneföreningens Forskningsstiftelse project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivoruchko, A., Serrano-Amatriain, C., Chen, Y. et al. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40, 1051–1056 (2013). https://doi.org/10.1007/s10295-013-1296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1296-0

Keywords

Navigation