Skip to main content
Log in

Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4 + content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdullah-Al-Mahin SS, Higashi C, Matsumoto S, Sonomoto K (2010) Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microb 76:4277–4285

    Article  CAS  Google Scholar 

  2. Barker C, Park S (2001) Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl Environ Microb 67:1594–1600

    Article  CAS  Google Scholar 

  3. Breeuwer P, Drocourt J, Rombouts FM, Abee T (1996) A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microb 62:178–183

    CAS  Google Scholar 

  4. Broadbent JR, Larsen RL, Deibel V, Steele JL (2010) Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 192:2445–2458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E (2005) Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5:4794–4807

    Article  CAS  PubMed  Google Scholar 

  6. Carranza P, Grunau A, Schneider T, Hartmann I, Lehner A, Stephan R, Gehrig P, Grossmann J, Groebel K, Hoelzle LE, Eberl L, Riedel K (2010) A gel-free quantitative proteomics approach to investigate temperature adaptation of the food-borne pathogen Cronobacter turicensis 3032. Proteomics 10:3248–3261

    Article  CAS  PubMed  Google Scholar 

  7. De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiol 147:1863–1873

    Google Scholar 

  8. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  PubMed  Google Scholar 

  9. Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microb 70:5929–5936

    Article  CAS  Google Scholar 

  10. Fernández L, Beerthuyzen MM, Brown J, Siezen RJ, Coolbear T, Holland R, Kuipers OP (2000) Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis. Appl Environ Microb 66:1360–1368

    Article  Google Scholar 

  11. Hörmann S, Scheyhing C, Behr J, Pavlovic M, Ehrmann M, Vogel RF (2006) Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451T. Proteomics 6:1878–1885

    Article  PubMed  Google Scholar 

  12. Hamon E, Horvatovich P, Marchioni E, Aoudé-Werner D, Ennahar S (2013) Investigation of potential markers of acid resistance in Lactobacillus plantarum by comparative proteomics. J Appl Microbiol 116:134–144

    Article  PubMed  Google Scholar 

  13. Jin J, Zhang B, Guo H, Cui J, Jiang L, Song S, Sun M, Ren F (2012) Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-Sequencing. PLoS one 7:e50777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Langereis J, Prinsen B, Coppens C, Koenderman L, Ulfman L (2009) A 2D-DIGE approach to identify proteins involved in inside-out control of integrins. J Proteome Res 8:3824–3833

    Article  CAS  PubMed  Google Scholar 

  15. Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22:906–918

    Article  CAS  PubMed  Google Scholar 

  16. Lehrer RI, Barton A, Ganz T (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods 108:153–158

    Article  CAS  PubMed  Google Scholar 

  17. Len ACL, Harty DWS, Jacques NA (2004) Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiol 150:1339–1351

    Article  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  19. O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microb 63:4210–4215

    Google Scholar 

  20. Parvez S, Malik KA, Kang SA, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185

    Article  CAS  PubMed  Google Scholar 

  21. Randazzo CL, Restuccia C, Romano AD, Caggia C (2004) Lactobacillus casei, dominant species in naturally fermented Sicilian green olives. Int J Food Microbiol 90:9–14

    Article  PubMed  Google Scholar 

  22. Sanchez B, Champomier-Vergès MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, de los Reyes-Gavilan CG, Johansen E, Zagorec M, Margolles A (2007) Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microb 73:6757–6767

  23. Wu C, Zhang J, Chen W, Wang M, Du G, Chen J (2012) A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biot 93:707–722

    Article  CAS  Google Scholar 

  24. Wu C, Zhang J, Du G, Chen J (2013) Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 97:4083–4093

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Zhang J, Du G, Chen J (2013) Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresource Technol 143:238–241

    Article  CAS  Google Scholar 

  26. Wu C, Zhang J, Wang M, Du G, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39:1031–1039

    Article  CAS  PubMed  Google Scholar 

  27. Wu R, Wang W, Yu D, Zhang W, Li Y, Sun Z, Wu J, Meng H, Zhang H (2009) Proteomic analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditionally home-made Koumiss in Inner Mongolia of China. Mol Cell Proteomics 10:2321–2338

    Article  Google Scholar 

  28. Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H (2011) Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147:181–187

    Article  CAS  PubMed  Google Scholar 

  29. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES–(ADP) 7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

  30. Yin G, Sun Z, Liu N, Zhang L, Song Y, Zhu C, Wen F (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biot 84:323–333

    Article  CAS  Google Scholar 

  31. Zhu Y, Zhang Y, Li Y (2009) Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biot 83:597–610

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31301546), the Major State Basic Research Development Program of China (973 Program, 2013CB733902), the National High Technology Research and Development of China (863 Program, 2011AA100901), and the Natural Science Foundation of Jiangsu Province (BK2012553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongde Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., He, G. & Zhang, J. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation. J Ind Microbiol Biotechnol 41, 1533–1540 (2014). https://doi.org/10.1007/s10295-014-1487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1487-3

Keywords

Navigation