Skip to main content
Log in

Genetic engineering combined with random mutagenesis to enhance G418 production in Micromonospora echinospora

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

G418, produced by fermentation of Micromonospora echinospora, is an aminoglycoside antibiotic commonly used in genetic selection and maintenance of eukaryotic cells. Besides G418, M. echinospora produces many G418 analogs. As a result, the G418 product always contains impurities such as gentamicin C1, C1a, C2, C2a, gentamicin A and gentamicin X2. These impurities are less potent but more toxic than G418, but the purification of G418 is difficult because it has similar properties to its impurities. G418 is an intermediate in the gentamicin biosynthesis pathway. From G418 the pathway proceeds via successive dehydrogenation and aminotransferation at the C-6′ position to generate the gentamicin C complex, but genes responsible for these steps are still obscure. Through disruption of gacJ, which is deduced to encode a C-6′ dehydrogenase, the biosynthetic impurities gentamicin C1, C1a, C2 and C2a were all removed, and G418 became the main product of the gacJ disruption strain. These results demonstrated that gacJ is in charge of conversion of the 6′-OH of G418 into 6′-NH2. Disruption of gacJ not only eliminates the impurities seen in the original strain but also improves G418 titers by 15-fold. G418 production was further improved by 26.6 % through traditional random mutagenesis. Through the use of combined traditional and recombinant genetic techniques, we produced a strain from which most impurities were removed and G418 production was improved by 19 fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baltz RH, Stonesifer J (1985) Adaptive response and enhancement of N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis by chloramphenicol in Streptomyces fradiae. J Bacteriol 164:944–9462

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116(1):43–49. doi:10.1016/0378-1119(92)90627-2

    Article  CAS  PubMed  Google Scholar 

  3. Clausnitzer D, Piepersberg W, Wehmeier UF (2011) The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J Appl Microbiol 111(3):642–651. doi:10.1111/j.1365-2672.2011.05082.x

    Article  CAS  PubMed  Google Scholar 

  4. Cobb RE, Ning JC, Zhao H (2014) DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41(2):469–477. doi:10.1007/s10295-013-1358-3

    Article  CAS  PubMed  Google Scholar 

  5. Janssen GR, Bibb MJ (1993) Derivatives of pUC 18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124(1):133–134. doi:10.1016/0378-1119(93)90774-W

    Article  CAS  PubMed  Google Scholar 

  6. Huang F, Spiteller D, Koorbanally NA, Li Y, Llewellyn NM, Spencer JB (2007) Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. Chem Bio Chem 8(3):283–288. doi:10.1002/cbic.200600371

    Article  CAS  PubMed  Google Scholar 

  7. Kharel MK, Basnet DB, Lee HC, Liou K, Moon YH, Kim JJ, Woo JS, Sohng JK (2004) Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicin-producing Micromonospora echinospora ATCC15835. Mol Cell 18(1):71–78

    CAS  Google Scholar 

  8. Kim JY, Suh JW, Kang SH, Phan TH, Park SH, Kwon HJ (2008) Gene inactivation study of gntE reveals its role in the first step of pseudotrisaccharide modifications in gentamicin biosynthesis. Biochem Biophys Res Commun 372(4):730–734. doi:10.1016/j.bbrc.2008.05.133

    Article  CAS  PubMed  Google Scholar 

  9. Li D, Li H, Ni X, Zhang H, Xia H (2013) Construction of a gentamicin C1a-overproducing strain of Micromonospora echinospora by inactivation of the gacD gene. Microbiol Res 168(3):263–267. doi:10.1016/j.micres.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Llewellyn NM, Giri R, Huang F, Spencer JB (2005) Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem Biol 12(6):665–675. doi:10.1016/j.chembiol.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Llewellyn NM, Li Y, Spencer JB (2007) Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem Biol 14(4):379–386. doi:10.1016/j.chembiol.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  12. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111(1):61–68. doi:10.1016/0378-1119(92)90603-M

    Article  CAS  PubMed  Google Scholar 

  13. Medema MH, Alam MT, Heijne WHM, van den Berg MA, MÜller U, Trefzer A, Bovenberg RAL, Breitling R, Takano E (2011) Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. Microb Biotechnol 4(2):300–305. doi:10.1111/j.1751-7915.2010.00226.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pan Q (2012) Low cell toxicity antibiotic G418. WO Patent 2,012,079,039

  15. Park JW, Hong JSJ, Parajuli N, Jung WS, Park SR, Lim SK, Sohng JK, Yoon YJ (2008) Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proc Natl Acad Sci USA 105(24):8399–8404. doi:10.1073/pnas.0803164105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Park JW, Park SR, Nepal KK, Han AR, Ban YH, Yoo YJ, Kim EJ, Kim EM, Kim D, Sohng JK, Yoon YJ (2011) Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol 7(11):843–852. doi:10.1038/nchembio.671

    CAS  PubMed  Google Scholar 

  17. Rebets Y, Brotz E, Tokovenko B, Luzhetskyy A (2014) Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol Biotechnol 41(2):387–402. doi:10.1007/s10295-013-1352-9

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Laboratory Press, New York

    Google Scholar 

  19. Sucipto H, Kudo F, Eguchi T (2012) The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the alpha-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Angew Chem Int Ed Engl 51(14):3428–3431. doi:10.1002/anie.201108122

    Article  CAS  PubMed  Google Scholar 

  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio Evol 28:2731–2739

    Article  CAS  Google Scholar 

  21. Unwin J, Standage S, Alexander D, Hosted T Jr, Horan AC, Wellington EM (2004) Gene cluster in Micromonospora echinospora ATCC15835 for the biosynthesis of the gentamicin C complex. J Antibiot 57(7):436–445. doi:10.7164/antibiotics.57.436

    CAS  PubMed  Google Scholar 

  22. Winter JM, Tang Y (2012) Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol 23(5):736–743. doi:10.1016/j.copbio.2011.12.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yu Y, Hou X, Ni X, Xia H (2008) Biosynthesis of 3′-deoxy-carbamoylkanamycin C in a Streptomyces tenebrarius mutant strain by tacB gene disruption. J Antibiot 61(2):63–69. doi:10.1038/ja.2008.111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 8127341) and Scientific Research Foundation for Doctors of Liaoning Province (No. 20121103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanzhang Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Sun, Z., Zhang, H. et al. Genetic engineering combined with random mutagenesis to enhance G418 production in Micromonospora echinospora . J Ind Microbiol Biotechnol 41, 1383–1390 (2014). https://doi.org/10.1007/s10295-014-1479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1479-3

Keywords

Navigation