Skip to main content
Log in

A novel approach for improving the yield of Bacillus subtilis transglutaminase in heterologous strains

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The transglutaminase (BTG) from Bacillus subtilis is considered to be a new type of transglutaminase for the food industry. Given that the BTG gene only encodes a mature peptide, the expression of BTG in heterologous microbial hosts could affect their normal growth due to BTG’s typical transglutaminase activity which can catalyze cross-linking of proteins in the cells. Therefore, we developed a novel approach to suppress BTG activity and reduce the toxicity on microbial hosts, thus improving BTG yield. Genes encoding the respective regions of transglutaminase propeptide from seven species of Streptomyces were fused to the N-terminal of the BTG gene to produce fusion proteins. We found that all the fused propeptides could suppress BTG activity. Importantly, BTG activity could be completely restored after the removal of the propeptides by proteolytic cleavage. Of the seven propeptides tested, the propeptide proD from Streptomyces caniferus had the strongest suppressive effect on BTG activity (70 % of the activity suppressed). Moreover, fusion protein proD-BTG (containing proD) also exhibited the highest yield which was more than twofold of the expression level of BTG in an active form in Escherichia coli. Secretion expression of BTG and proD-BTG in Corynebacterium glutamicum further showed that our novel approach was suitable for the efficient BTG expression, thus providing a valuable platform for further optimization of large-scale BTG production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganism. Agric Biol Chem 53:2613–2617

    Article  CAS  Google Scholar 

  2. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2004) High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric propeptide from Streptomyces cinnamoneus transglutaminase. J Biotechnol 110:219–226

    Article  CAS  PubMed  Google Scholar 

  3. Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    Article  CAS  PubMed  Google Scholar 

  4. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28

    Article  CAS  PubMed  Google Scholar 

  5. Ikura K, Sasaki R, Motoki M (1992) Use of transglutaminase in quality-improvement and processing of food proteins. Comments Agric Food Chem 2:389–407

    CAS  Google Scholar 

  6. Itaya H, Kikuchi Y (2008) Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl Microbiol Biotechnol 78:621–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jaros D, Partschefeld C, Henle T, Rohm H (2006) Transglutaminase in dairy products: chemistry, physics, applications. J Texture Stud 37:113–155

    Article  Google Scholar 

  8. Kikuchi Y, Date M, Yokoyama K, Umezawa Y (2003) Secretion of active-form Streptoverticillium mobaraense Transglutaminase by corynebacterium glutamicum: processing of the Pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl Environ Microb 69:358–366

    Article  CAS  Google Scholar 

  9. Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S (1996) ε-(γ-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol Lett 144:157–160

    CAS  Google Scholar 

  10. Kobayashi K, Hashiguchi K, Yokozeki K, Yamanaka S (1998) Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci Biotechnol Biochem 62:1109–1114

    Article  CAS  PubMed  Google Scholar 

  11. Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277:44252–44260

    Article  CAS  PubMed  Google Scholar 

  12. Liu XQ, Yang XQ, Xie FH, Song LY, Zhang GQ, Qian SJ (2007) On-column refolding and purification of transglutaminase from Streptomyces fradiae expressed as inclusion bodies in Escherichia coli. Protein Expr Purif 51:179–186

    Article  CAS  PubMed  Google Scholar 

  13. Mariniello L, Porta R (2005) Transglutaminases as biotechnological tools. Prog Exp Tumor Res 38:174–191

    Article  CAS  PubMed  Google Scholar 

  14. Motoki M, Nio N (1983) Cross-linking between different food proteins by transglutaminase. J Food Sci 48:561–566

    Article  CAS  Google Scholar 

  15. Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends Food Sci Technol 9:204–210

    Article  CAS  Google Scholar 

  16. Marx CK, Hertel TC, Pietzsch M (2007) Soluble expression of a pro-transglutaminase from Streptomyces mobaraensis in Escherichia coli. Enzyme Microb Tech 40:1543–1550

    Article  CAS  Google Scholar 

  17. Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S, Fuchsbauer HL (1998) Bacterial pro-transglutaminases from Streptoverticillium mobaraense–Purification, characterization and sequence of the zymogen. Eur J Biochem 257:570–576

    Article  CAS  PubMed  Google Scholar 

  18. Placido D, Fernandes CG, Isidro A, Carrondo MA, Henriques AO, Archer M (2008) Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expr Purif 59:1–8

    Article  CAS  PubMed  Google Scholar 

  19. Ragkousi K, Setlow P (2004) Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186:5567–5575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Suzuki S, Izawa Y, Kobayashi K, Eto Y, Yamanaka S, Kubota K, Yokozeki K (2000) Purification and characterization of novel transglutaminase from Bacillus subtilis spores. Biosci Biotechnol Biochem 64:2344–2351

    Article  CAS  PubMed  Google Scholar 

  21. Takehana S, Washizu K, Ando K, Koikeda S, Takeuchi K, Matsui H, Motoki M, Takagi H (1994) Chemical synthesis of the gene for microbial transglutaminase from Streptoverticillium and its expression in Escherichia coli. Biosci Biotechnol Biochem 58:88–92

    Article  CAS  PubMed  Google Scholar 

  22. Takagi J, Saito Y, Kikuchi T, Inada Y (1986) Modification of transglutaminase assay: use of ammonium sulfate to stop the reaction. Anal Biochem 153:295–298

    Article  CAS  PubMed  Google Scholar 

  23. Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  24. Washizu KK, Ando S, Koikeda S, Hirose A, Matsuura H, Takagi M, Takeuchi K, Motoki (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem 58:82–87

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H (2010) Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155:741–750

    Article  Google Scholar 

  26. Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454

    Article  CAS  PubMed  Google Scholar 

  27. Yurimoto H, Yamane M, Kikuchi Y, Matsui H, Kato N, Sakai Y (2004) The pro-peptide of Streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci Biotechnol Biochem 68:2058–2069

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama KI, Nakamura N, Seguro K, Kubota K (2000) Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64:1263–1270

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26:559–565

    Article  CAS  PubMed  Google Scholar 

  30. Zilhão R, Isticato R, Martins LO, Steil L, Völker U, Ricca E, Moran CP Jr, Henriques AO (2005) Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J Bacteriol 187:7753–7764

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-Tech Research and Development Plan (“863” Plan) (2011AA100905-4), the Tianjin Research Program of Application Foundation and Advanced Technology (14JCYBJC23800), the programme for Changjiang Scholars and Innovative Research Team in University (IRT1166), and the National Natural Science Fund (31101219) of China.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled ‘A novel approach for improving the yield of Bacillus subtilis transglutaminase in heterologous strains’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuping Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lin, S., Zhang, X. et al. A novel approach for improving the yield of Bacillus subtilis transglutaminase in heterologous strains. J Ind Microbiol Biotechnol 41, 1227–1235 (2014). https://doi.org/10.1007/s10295-014-1468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1468-6

Keywords

Navigation